HIV Comorbidities: Pay Attention to Hypertension Amid Changing Guidelines An Analysis of Texas Medical Monitoring Project Data

CONTACT: JessicaR.Hyde@dshs.texas.gov

Based on new clinical hypertension guidelines set forth by the American Heart Association and the American College of Cardiology (ACC/AHA) in November 2017: 69% of people living with HIV (PLWH) who received medical care in Texas in 2013-2014 were hypertensive.
Hypertension was prevalent among those with traditional risk factors, such as smoking (65%), obesity (84%) and age (≥ 50 years: 83%).
Age, sex, race or ethnicity, obesity, smoking, duration of antiretroviral therapy (ART) and time since HIV diagnosis were significant predictors of hypertension. Men were 2.2 times more likely to have hypertension than women
(95\% Cl: 1.4-3.4).
Obese participants had 5.7 times greater odds of being hypertensive than those with a body mass index (BMI) <25 (95\% Cl: 3.3-9.9).
Background
Before treatment for HIV became widely available, PLWH typically died within 12 years of infection. ${ }^{1}$ Nearly 90% of deaths among PLWH between $1987-1989$ were attributable to AIDS
defining opoortunistic infections or malignancies. 2 Ater thity vears of advancement in treaz ment regimens, availability of testing, and access to care, HIV is no longer a death sentence PLWH who achieve durable viral suppression can now survive decades after infection with a Iife expectancy comparable to the general population of the United States; however, with Ionger lifespans comes increased burden of chronic disease. 3 In high-income countries like the U.S., the majority (53\%) of deaths in PLWH are from non-AIDS causes, 15% of which resur
from cardiovascular disease. ${ }^{4}$ Hypertension is a chief risk factor for carciovascular disease and is implicated in 75% of all burden of hypertension among PLWH were sparse relative to the number available for the general population with very little discussion of undiagnosed hypertension, when patients with charted high blood pressure readings do not receive a formal

Methods

To address this gap, we investigated the prevalence of hypertension and associated risk fac tors among participants of the 2013-2014 Medical Monitoring Project (MMP), a surveillance system designed by the Centers for Disease Control and Prevention (CDC) to capture clini-
cal and behavioral data from a representative sample of PWHH who are receiving HIV care. cal and behavioral data from a representative sample of PLWH who are receiving HV care.
We examined abstracted medical record data of 957 participants from the Texas and HousWe examined abstracted meariciants with hypertension were identififed by formal diagnosis
ton, Texas, project areas. Participants antihypertensive medication use or high blood pressure readings within the preceding two years. We used both the diagnostic criteria set forth by the Joint National Commission (JNC 7) in 20038 - the commonly used threshold of $140 / 90 \mathrm{mmHg}$ - and the lower threshold of
$130 / 80 \mathrm{mmHg}$ recenty recommended by the AcC $/ \mathrm{HHA}$ in 2017 (Table 1 in $130 / 80 \mathrm{mmHg}$ recently recommended by the $\mathrm{ACC} /$ /HA in 2017 (Table 1) in order to assess
the impact of changing guidelines. Associations with sociodemographic characteristics were assessed using Rao-Scott chiscauare tests a t s significance level of $p<0.05$. Odds of hypertension were calculated using multivariable logistic regression models while adjusting for several demographic and HIV-related variables.

Table 1. Diagnostic criteria used to identify hypertensive participants. ${ }^{\text {.10 }}$		
Measure	2003 JNC 7 Guidelines	2017 ACC/AHA Guidelines
Average of last three systolic readings	$\geq 140 \mathrm{mmHg}$	$\geq 130 \mathrm{mmHg}$
Average of last three diastolic readings	$\geq 90 \mathrm{mmHg}$	$\geq 80 \mathrm{mmHg}$
One systolic reading	$>180 \mathrm{mmHg}$	$>180 \mathrm{mmHg}$
One diastoic reading	$>120 \mathrm{mmHg}$	$>120 \mathrm{mmHg}$
Three systoic readings	$\geq 140 \mathrm{mmHg}$	$\geq 130 \mathrm{mmHg}$
Three diastolic readings	$\geq 90 \mathrm{mmHg}$	$\geq 80 \mathrm{mmHg}$

Results

JNC 7: The diagnostic criteria recommended in JNC $7(140 / 90 \mathrm{mmH})$ were the standard at the time of the $2013-2014$ MMP survey. Under these criteria, prevalence of hypertension was markedly higher among sampled PLWH (47.6%) than the general adult population in Texas at that time HIV diagnosis were associated with hypertension (Table 2). It should be noted, however, that age may attenuate these relationships.
ACC/AHA: Ater applying the lower diagnostic threshold of $130 / 80 \mathrm{mmHg}$ recently recommended by ACC/AHA to $2013-2014$ MMP survey data, prevalence of hypertension among sampled PLWH
rose by more than 20 percentage points, from 47.6% to 68.7% (Table 2). Nearly one.third of PLWH with hypertension lacked evidence of hypertension diagnoses or treatment in their medical chart. The ACC/AHA expect that 14% more people in the general population will be diagnosed with hypertension once these new guidelines are adopted as standard; ${ }^{12}$ therefore, we anticipate that hypertension prevalence among PLWH will still remain substantially higher than the general popuation. Age, race or ethnicity, obesity, smoking, duration of ART use and ime since HIV ciagnosis re
mained significantly asociated with hypertension; however, binge drinking became only marsinally significant (Table 2).

Discussion
Our results show that PLWH are disproportionately burdened by hypertension. Why?
Aging: Incidence and prevalence of chronic disease increases with age and as a whole, PLW are aging. ${ }^{13}$ Incidence of hypertension in PLWH increases by 34% for every 10 -year increase in age, with the highest risk among those 40 years of age or older who have ived 10 or more

Modifiable Risk Factors: Additionally, the presence of traditional modifiable risk factors of hypertension, such as smoking and obesity, is high among PLWH. A third of the 2013-2014 MMP survey sample were current smokers, and another 21% were former smokers. Prevalence of hypertension was higher among former smokers than current smokers or those who never smoked. Wasting, which once characterized advanced HIV infection, is now more an ex ception than the rule. ${ }^{16} \mathrm{~J}$ ust 6% of our sample were underweight, while 64% were overweight or may simply reflect the growing obesity enidemic in the U.S. 16
-Biological Pathways: Emerging research indicates that inflammatory immune response to HVV infection may damage the endothelial receptors in the lining of vasculature that regulate blood pressure, leaving PLWH predisposed to development of hypertension. ${ }^{7 /}$ While there are conficicting studies on the relationship between hypertension and the class and/or duration of ART, our results demonstrate a significant association between length of time on any ART and
hypertension. Future analysis of MMP survey data may involve cross-tabulation by class of ART.

Limitations

The 2013-2014 MMP survey only sampled PLWH in care, so the results may not be generaliz able to those who are not linked to care or are unaware of their HIV status. It is possible tha Uured in the abstracted medical record. We also canot guarantee the accuracy of blood pres sure readings or control for white coat syndrome. General population data from the Behavioral Risk Factor Surveillance System survey rely on self-report, and we lack a HIV-negative control group for comparison. We intended to use the Centers for Disease Control and Prevention Million Hearts Hypertension Prevalence Estimator Tool to simulate a HIV-negative cohort; however, the tool has not yet been updated to reflect the latest hypertension guidelines. Data are not currently available to determine if sampled PLWH had hypertension at the time of their HIV V -
agnosis (orevalent hypertension) or if they developed hypertension in the time since (incident hypertension). This is a point of future research interest, as it will further clarify the relationship between HIV and hypertension.

Table 2. Hypertension prevalence among the 2013-2014 MMP sample by characteristics and guideline set				
Characteristic	Hypertension Prevalence*			
	$\begin{gathered} \text { JNC } 7 \\ (140 / 90 \mathrm{mmHg}) \end{gathered}$		$\begin{gathered} \text { ACC/AHA } \\ (130 / 80 \mathrm{mmHg}) \end{gathered}$	
Total	47.6\%		68.7\%	
Age $18-39$ $40-49$ $50+$	$\begin{aligned} & 24.9 \% \\ & 43.4 \% \\ & 67.7 \% \end{aligned}$	$p<0.0001$	$\begin{aligned} & 50.2 \% \\ & 67.8 \% \\ & 83.0 \% \end{aligned}$	p<0.0001
	$\begin{aligned} & 47.4 \% \\ & 48.5 \% \end{aligned}$	$p=0.7859$	$\begin{aligned} & 70.2 \% \\ & 64.0 \% \end{aligned}$	$p=0.0882$
Race/Ethnicity Non-Hispanic white Non-Hispanic black Hispanic	$\begin{aligned} & 50.2 \% \\ & 53.4 \% \\ & 38.6 \% \end{aligned}$	$p=0.0007$	$\begin{aligned} & 73.3 \% \% \\ & 72.9 \% \\ & 60.2 \% \end{aligned}$	$p=0.0003$
Body Mass Index (kg/m2) 24.9 or below (underweight to normal) 25 to 29.9 (overweight) 30 and above (obese)	$\begin{aligned} & 40.8 \% \\ & \text { 43.6\% } \\ & 62.9 \% \end{aligned}$	$p<0.0001$	$\begin{aligned} & 55.9 \% \\ & 70.5 \% \\ & 84.4 \% \end{aligned}$	p<0.0001
Education <High school diploma =High school diploma or equivalent >High school diploma	$\begin{aligned} & 49.7 \% \\ & 45.1 \% \\ & 48.4 \% \end{aligned}$	$p=0.6186$	$\begin{aligned} & 66.8 \% \\ & 68.1 \% \\ & 69.7 \% \end{aligned}$	$p=0.8002$
Insurance Uninsured Public (including Ryan White) Private	$\begin{aligned} & 34.2 \% \\ & 49.3 \% \\ & 44.5 \% \end{aligned}$	$p=0.2562$	$\begin{aligned} & 51.2 \% \\ & 69.0 \% \\ & 69.1 \% \end{aligned}$	$p=0.2519$
Poverty Above federal poverty leve Below federal poverty level	$\begin{aligned} & 4.4 \% \\ & 50.0 \% \\ & \hline \end{aligned}$	$p=0.2852$	$\begin{aligned} & 69.3 \% \\ & 67.9 \% \\ & \hline 9 \% \end{aligned}$	$p=0.6551$
Smoking Status Never sanoker Former smoker Current smoker	$\begin{aligned} & 42.8 \% \\ & 58.3 \% \\ & 47.3 \% \end{aligned}$	$p=0.0027$	$\begin{aligned} & 66.2 \% \\ & 79.4 \% \\ & 65.3 \% \end{aligned}$	$p=0.0050$
Binge Drinking Yes No	$\begin{aligned} & 40.8 \% \\ & 49.4 \% \end{aligned}$	$p=0.0467$	$\begin{aligned} & 65.4 \% \\ & 69.4 \% \end{aligned}$	$p=0.3757$
Duration of ART Use <10 years ≥ 10 years	$\begin{aligned} & 37.0 \% \\ & \text { 61.1\% } \end{aligned}$	p<0.0001	$\begin{aligned} & 60.4 \% \\ & 79.6 \% \end{aligned}$	$p<0.0001$
Time Since HIV Diagnosis <5 years 5-9 years ≥ 10 years	$\begin{aligned} & 35.4 \% \\ & 37.2 \% \\ & 58.9 \% \end{aligned}$	$p<0.0001$	$\begin{aligned} & 61.1 \% \\ & 58.7 \% \\ & 77.2 \% \end{aligned}$	$p<0.0001$
Viral Load (copies/mL) $\quad 2000$ (undetectable) 2200	$\begin{aligned} & 48.7 \% \\ & 45.1 \% \end{aligned}$	$p=0.3560$	$\begin{aligned} & 69.7 \% \\ & 66.2 \% \end{aligned}$	$p=0.3361$

TEXAS
Health and Human Services

