

Excel Training

Greg Leos, Epidemiologist DSHS Central Office

Introductions

Texas Department of State Health Services

- The VPD Team
- And you are?
 Name, Agency, and Favorite
 Quote

***85%
OF QUOTES
on the internet
are MADE UP.**
~ Abraham Lincoln

Outline

- Excel Basics
- Statistics
- Mapping
- Situation Report

Texas Department of State Health Services

Excel Basics

Basic Functions

- Logic formulae
- VLOOKUP
- Epi Curve
- Descriptive stats

TEXAS
Health and Human Services
Texas Department of State
Health Services

Setting Up Logic Formulas

- Why?
 - Case definitions
 - Missing dates for age calculations
 - Yes vs. Yes & Maybe
 - Cases vs. Controls
- IF/THEN in Excel
 - Single
 - Nested
 - COUNTIF
 - COUNTA

IF/THEN in Excel

- =IF(A2="Yes", 1, "")
 - =If A2 is Yes, then enter 1, else leave blank
- =CountIF(A2:A10,"Yes")
 - =Count of all cells b/t A2 and A10 that have Yes in them
- =CountIFS(A2:A10,"Yes", B2:B10, 1)
 - Count all rows where column A is Yes and column B is 1
- =CountA(A2:A10)
 - Count all cells b/t A2 and A10 are not blank

Nested IF/THEN

- =IF(IF(J2 = "unk", ((I2-N2)/365.25), ((J2-N2)/365.25))>=1,(INT(IF(J2 = "unk", ((I2-N2)/365.25)), ((J2-N2)/365.25)))),IF(J2 = "unk", ((I2-N2)/365.25), ((J2-N2)/365.25)))
- To calculate age based on Onset or Collection (if Onset is unknown)
- Age is reported as an integer if 1 year old or older
- Age is reported as a decimal if less than a year old

Descriptive Summary Table and Graphs

- Min, Max, Median (Age)
- Age Categories via <u>VLOOKUP</u>
- Percentage (Gender, Race, Ethnicity)
- Epi Curves (will cover with pivot tables)

Normal Curve

Paranormal Curve

Summaries in Excel

- =Min(A2:A10)
- = Max(A2:A10)
- =MEDIAN(A2:A10)
- Format for percentage
 - Use the numbers you need (i.e., should you use SUM, COUNT, or COUNTIF(S))
- Pivot Tables to summarize or Create Epi Curves

Statistics

Excel can make your 2X2 table

- Odds Ratio (OR)
- Ninety-Five Percent Confidence Interval (95% CI)
- Chi-squared statistic (χ²)
- P-value

Odds Ratio (OR)

- Ratio of Yes to No in cases = a/b
- Ratio of Yes to No in "controls" = c/d
- OR = Ratio of the case ratio to "control" ratio, i.e. $\frac{a/b}{c/d}$
- Math time: $\frac{a/b}{c/d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$
- In Excel...

Exposure	Yes	No	Total		
Cases	а	b	a+b		
"Controls"	С	d	c+d		
Total	a+c	b+c	a+b+c+d		

OR in Excel

- $\cdot = (B3*M3)/(F3*L3)$
- =(Case Yes*Control No) / (Case No*Control Yes)

95% Confidence Interval (CI)

- What is a 95% CI?
 - $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$, $-\infty < x < \infty$
 - or e ~2.71828182845904523536028747135266249775724709369995
 - ln(OR)
 - $\pm 1.96\sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$ (plus and minus the product of the SD and SE)
 - Plus for the upper bound and minus for the lower bound

• 95% CI =
$$e^{\ln(OR) \pm 1.96 \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}}$$

In Excel...

SD = Standard Deviation SE = Standard Error

95% CI in Excel

- =EXP(LN(P3)±(1.96*SQRT((1/B3) +
 (1/F3)+(1/L3)+(1/M3))))
- =e to the ((natural log of the OR) ± (the SD*the SE))
- The SD = 1.96 for a 95% CI or 2.575 for a 99% CI
- The SE = The square root of (reciprocal of case yes + reciprocal of case no + reciprocal of control yes + reciprocal of control no)

χ^2 statistic

- Needed to calculate the p-value of the OR
- Numerator: The square of ad-bc, multiplied by the overall total
- Denominator: The product of each row total and column total

•
$$\chi^2 = \frac{(ad-bc)^2 \times (a+b+c+d)}{(a+b)(c+d)(a+c)(b+d)}$$

• In Excel...

Exposure	Yes No		Total	
Cases	а	b	a+b	
"Controls"	С	d	c+d	
Total	a+c	b+d	a+b+c+d	

χ^2 in Excel

- =IF(B3>0,(((B3*M3-F3*L3)^2)*(B3+F3+L3+M3))/(D3*N3*(B3+L3)*(F3+M3)),"n/a")
 - This calculates the χ^2 statistic if you have case "yes" responses, if you don't it will return "n/a".
 - Otherwise you'll have an error for your OR, but still calculate a χ^2

P-value

- Degrees of freedom (df) = (# columns-1) x (# rows-1)
 - For a 2x2 table, df = 1

DEGREES OF FREEDOM	PROBABILITY										
	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	0.01	0.001
1	0.004	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	6.64	10.83
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.60	5.99	9.21	13.82
3	0.35	0.58	1.01	1.42	2.37	3.66	4.64	6.25	7.82	11.34	16.27
4	0.71	1.06	1.65	2.20	3.36	4.88	5.99	7.78	9.49	13.28	18.47
5	1.14	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.07	15.09	20.52
6	1.63	2.20	3.07	3.83	5.35	7.23	8.56	10.64	12.59	16.81	22.46
7	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02	14.07	18.48	24.32
8	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36	15.51	20.09	26.12
9	3.32	4.17	5.38	6.39	8.34	10.66	12.24	14.68	16.92	21.67	27.88
10	3.94	4.86	6.18	7.27	9.34	11.78	13.44	15.99	18.31	23.21	29.59
	Nonsignificant								Significant		

Source: R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research, 6th ed., Table IV, Oliver & Boyd, Ltd., Edinburgh, 1963, by permission of the authors and publishers.

• In Excel...

P-value in Excel

- =IF(V3="n/a","n/a",CHIDIST(V3,1))
- =IF the χ^2 statistic reports "n/a", then this cell should also report "n/a"
- =CHIDIST(χ^2 statistic, df) will give you the p-value
- Conditional formatting, if <0.05 then make red

Mapping

Mapping for Excel 2016

- Data to use
- Types of maps
- Movies

A CHEAT SHEET FOR FIGURING OUT WHERE IN THE US YOU ARE BY RECOGNIZING THE BACKGROUND FROM MOVIES (FIR USE BY GEOGLESSER PLAYERS AND CREAT-UNIDED ASTRONAUTS)

The data

- What is needed
 - Address
 - Non-PHI identifier
 - Onset date
 - Anything else?

Situation Report

Updating others

- Use a template
- What to include
- When to update
- Who to update

Texas Department of State Health Services

Situation Report: Why?

- Nice summary of an outbreak
- Ready to deploy when asked for by the powers that be

- 1. Context/Background
 - Population affected
 - Location
 - Geography of outbreaks (in general)

Etiology

- 2. Initiation of Investigation
 - Date of notification
 - Date investigation started

- 3. Investigation Methods
 - Initial activity
 - Data collection methods
 - Analysis methods
 - Case definitions

- 4. Investigation Results
 - Numbers (lab confirmed and epi-linked)
 - Numbers (know onset dates, range of dates)
 - Epi Curves
 - Numbers (hospitalizations and deaths)
 - More Numbers (demographics and geography)
 - Even more numbers (relevant exposure data)

- 5. Discussions and/or Conclusions
 - So... whattaya think about this outbreak?

- 6. Recommendations for Controlling Disease...
 - So... whattaya goin' do now?

- 7. Key investigators and/or Report Authors
 - Give credit where credit is due

\ -

Texas Department of State

Situation Report: Components

- 8. Resources
 - Did you beg, borrow or steal any additional info?
 - Give them credit here

Texas Department of State Health Services

- Excel can do more
- Mapping, who knew?
- SitReps are important

Questions?

"Mr. Osborne, may I be excused?

My brain is full."

Texas Department of State Health Services

Thank you

Your contact information here