

Texas Department of State Health Services

Genetic Sequencing at DSHS Austin Laboratory: An Introduction

Bonnie Oh, PhD Maliha Rahman, PhD

2024 ELC Workshop, February 15th-16th, 2024 UT Pickle Research Campus

TEXAS Health and Human Services

Genetic Sequencing Branch

- Budded out of Molecular Biology Team in 2016

 → Advanced Molecular Detection Group in 2021
 → Branch in 2023
- 15 members
- Branch Goals:
 - Using next generation sequencing (NGS) for surveillance and identification of public health threats in human, food, and environmental samples.
 - Expand capacity to become a core sequencing lab for Texas

Health and Human Services

Genetic Sequencing Branch

- Partners with PulseNet (CDC) and GenomeTrakr (FDA)
 - Since 2015, national lab network focusing on clinical, food and environmental surveillance
 - Special projects with CDC (OAMD) /APHL (ISC)
- With epidemiologists, we help identify variants of interest and track outbreaks (e.g. foodborne, hospital acquired)
- Recruit samples from Universities/Laboratories
 - GenomeTrakr project and Wastewater surveillance

New instrumentation to expand capacity

Sample Workflow

Next Generation Sequencing (NGS)

Whole Genome Sequencing (WGS)

 Uses the whole genome of the microorganism to identify serotypes, drug resistance-related genes, toxin genes, cluster analysis, characteristics of interest

Texas Department of State Health Services

Amplicon-Based Sequencing

 Uses primers to target a specific organism or gene region for amplification to identify variants or characteristics of interest

Short-read vs. Long-read sequencing

The Whole Genome Sequencing (WGS) Process (cdc.gov)

Short Read Sequencing: Illumina WGS Library Preparation

TEXAS Health and Human Services Texas Department of State

Health Services

Short Read Sequencing: Sequencing by Synthesis (SBS by Illumina)

Cluster generation occurs on the flow cell

Health and Human Services Texas Department of State Health Services

http://Illumina.com

Short Read Sequencing: Sequencing by Synthesis (SBS by Illumina)

- \rightarrow Camera images tiles of clusters
- \rightarrow Base calling
- \rightarrow Generates forward and reverse sequences

Long Read Sequencing: Oxford Nanopore Technologies

 Long-read sequencing has technical advantages for the detection of specific types of genetic variation- preferable for metagenomics studies.

- Flow cell contains protein nanopores where genetic material passes through
- Each nucleotide A,T,C,G has a different electrical charge, which is measured to identify the sequence
- Requires larger initial input of genetic material
- Real time analysis of RNA/DNA

Health Services

Data Analysis

The sequencer produces millions of DNA reads and specialized computer programs are used to put them together in the correct order like pieces of a jigsaw puzzle. When completed, the genome sequence containing millions of nucleotides (in one or a few large pieces) is ready for further analysis.

Find relatedness, build phylogenetic trees, track variants

- Align and Assemble fragments
- Forward and Reverse reads (short-read)
- Compare to reference genomes
 - Cecret pipeline for Covid
 - BioNumerics for PulseNet/GenomeTrakr
 - Armadillo for antimicrobial resistance
 - Bluebonnet for NBS

Equipment Summary

• Automation:

Health and Human Services

- Integra Assist Plus (2)TECAN fluent (2)
- Clear Dx (1)
- Sequencers:
 - MiSeq (6)
 - NextSeq 2000 (2)
 - NovaSeq 6000 (2)
 - ONT MinION (2)

Our New Sequencing Room

Genetic Sequencing Branch

Health and Human Services

Texas Department of State

Health Services

variants of 19,541 clinical specimens.

In collaboration with the FDA, two Texas wastewater sites are screened for the presence of SARS-CoV-2. DSHS participated in the 2022 pilot study and sequencing is ongoing.

Scope of Testing is Growing

Current Testing

- Salmonella enterica
- Escherichia coli
- Shigella species
- Listeria monocytogenes
- Campylobacter spp.
- Vibrio spp.
- Carbapenem Resistant Organisms
- Neisseria gonorrhoeae
- *Mycobacterium tuberculosis*
- Cyclospora
- SARS-CoV-2
- Mpox

TEXAS

Health and Human Services

Texas Department of State

Health Services

• Influenza

Future Testing

- Candida auris
- Metagenomics for Unknown Threats (clinical and environmental)
- Lysosomal Storage Disorders for Newborn Screening
- Expanded wastewater surveillance

Genetic Sequencing Branch Testing Numbers

cas Department of State Health Services

2023: Sequencing Projects and Numbers

Enteric bacterial isolates sequenced at the Texas DSHS Laboratory

Health and Human Services

Health Services

2015 to June 2023

18

Most common Salmonella enterica serotypes sequenced at the Texas DSHS Laboratory

2020 to June 2023

Top 10 Salmonella Serotypes Sequenced

Health and Human Services Texas Department of State Health Services

Weekly Cluster Report Example for Enteric Pathogens

Health Services

wgMLST (Core)

00 120 10 _ຸ Key IsolatDate Serotype wgs 80 140 80 60 20 TXAWG2300170 2023-01-30 Newport 4.0 [4, 4] TXACB2300071 2022-12-30 Newport 5.0 [4, 5] TXAWG2300074 2022-12-29 Newport 5.0 [4, 6] TXACB2203483 2022-12-19 Newport 5.0 [4, 6] TXACB2203482 2022-12-13 Newport 6.0 [0, 10] TXAWG2300020 2022-12-30 Newport TXACB2300044 2023-01-03 Newport TXACB2203545 2022-12-29 Infantis 1.0 [1, 1] TXAWG2300046 2022-12-29 Infantis 6.0 [1, 7] TXAWG2300148 2023-01-21 Infantis TXACB2300165 2023-01-16 Thompson TXACB2203494 2022-12-15 Thompson TXAWG2203184 2022-12-16 Thompson

Salmonella Dendrogram

	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0
		TXAWG23	TXACB230	TXAWG23	TXACB220	TXACB220	TXAWG23	TXACB230	TXACB220	TXAWG23	TXAWG23	TXACB230	TXACB220	TXAWG22031	84
2	TXAWG2300170	0	4	5	5	5	9	9	2696	2692	2696	2619	2620	2618	
	TXACB2300071	4	0	5	5	5	9	9	2698	2694	2698	2622	2623	2621	
ŀ	TXAWG2300074	5	5	0	6	6	10	10	2695	2691	2695	2619	2620	2618	
5	TXACB2203483	5	5	6	0	6	10	10	2695	2691	2695	2620	2621	2619	
5	TXACB2203482	5	5	6	6	0	10	10	2700	2696	2700	2621	2622	2620	
1	TXAWG2300020	9	9	10	10	10	0	0	2697	2693	2697	2623	2624	2622	
8	TXACB2300044	9	9	10	10	10	0	0	2695	2691	2695	2620	2621	2619	
	TXACB2203545	2696	2698	2695	2695	2700	2697	2695	0	1	7	2701	2702	2700	
0	TXAWG2300046	2692	2694	2691	2691	2696	2693	2691	1	0	6	2697	2698	2696	
1	TXAWG2300148	2696	2698	2695	2695	2700	2697	2695	7	6	0	2702	2703	2701	
2	TXACB2300165	2619	2622	2619	2620	2621	2623	2620	2701	2697	2702	0	0	0	
3	TXACB2203494	2620	2623	2620	2621	2622	2624	2621	2702	2698	2703	0	0	0	
4	TXAWG2203184	2618	2621	2618	2619	2620	2622	2619	2700	2696	2701	0	0	0	
5															

Heatmap

20

PulseNet Participating Labs Share Outbreak Information

Texas Department of State Health Services

Prevention		Posted January 18, 2024
Symptoms		This map shows where the
Diagnosis & Treatment	+	This outbreak may not be
Current Outbreaks	_	than the number reporte
Reporting Timeline		WA
<i>Salmonella</i> Outbreak Linked to Charcuterie Meats	_	OR
Where Sick People Lived		
When People Got Sick		
Investigation Details		CA
<i>Salmonella</i> Outbreak Linked to Cantaloupes	+	
<i>Salmonella</i> Outbreak Linked to Dr Dog Food	у+	
<i>Salmonella</i> Outbreak Linked to Fresh Diced Onions	+	AK
<i>Salmonella</i> Outbreaks Linked to Small Turtles	+	· · · · · · · · · · · · · · · · · · ·
<i>Salmonella</i> Outbreak Linked to Ground Beef	+	Number of Sick P
<i>Salmonella</i> Outbreak Linked to Raw Cookie Dough	+	• 4 to 5
Salmonella Outbreak Linked to	+	Data Table

This map shows where the 47 people in this Salmonella outbreak lived.

This outbreak may not be limited to the states with known illnesses, and the true number of sick people is likely much higher than the number reported. This is because many people recover without medical care and are not tested for *Salmonella*.

https://www.cdc.gov/salmonella/charcuterie-meats-01-24/map.html

SARS-CoV-2 Samples Sequenced Overtime

Tracking SARS-CoV-2 Lineages

January 2021-August 2023

Texas Department of State

Health Services

GISAID VOC and VOI Lineage Proportions by Collection Date

Denton Wastewater SARS-CoV-2 Surveillance

February 2021-May 2023

Health Services

Texas Department of State

Influenza Sequencing Center

Massachusetts Minnesota Colorado Texas Florida

- Real-time NGS data for Flu A/B
- Uses APHL AIMS (APHL Informatics Services) cloud-based environment for data transfer in near real-time and genome assembly analysis
- Project Goal: sequence 500 specimens per year

Influenza Sequencing Center

Texas Department of State Health Services

CDC Yearly Lab Work on Flu Viruses

More than 1 million patient specimens are tested in clinical labs participating in CDC domestic disease surveillance.*

About 100,000 specimens are tested in 93 state/local public health labs.

CDC conducts full genetic sequencing on about 7,000 flu viruses each year.

CDC tests about 2,000 flu viruses to determine their immune properties.

CDC prepares as many as 50 viruses for possible use in vaccine production.

- Increased recruitment will improve surveillance
- New ISC locations will expand sequencing capabilities
- Improve vaccine development

https://www.cdc.gov/flu/resourcecenter/freeresources/graphics/infographic-lab-work.htm

*Influenza data current as of 2020-2021, as reported by CDC's Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD)

DSHS Influenza Positivity Rates and Breakdown

TEXAS Health and Human Services

Texas Department of State Health Services

We need to increase recruitment to better represent Texas Flu data

2020-

2021-

2022-

Working together...

- We are here to improve Texas public health surveillance
- More samples improves surveillance coverage
- Please help increase recruitment for:
 - Foodborne organisms like E. coli, Listeria, Campy
 - Cyclospora
 - SARS-CoV-2
 - Influenza samples
 - Mpox samples

Genetic Sequencing Branch

Texas Department of State Health Services

Thank you

Bonnie.Oh@dshs.texas.gov

Maliha.Rahman@dshs.texas.gov