Contaminated Sharps Injuries Among Healthcare Workers in Texas: 2013

Greg Abbott, Governor

John Hellerstedt, M.D., Commissioner, Department of State Health Services

November 2016

Acknowledgements

This report was prepared Andy Mauney, Nesreen Gusbi and Vickie Gillespie, Emerging and Infectious Disease Surveillance Branch, Texas Department of State Health Services. The contributions of Marilyn Felkner, DrPH, Emerging and Acute Infectious Disease Surveillance Branch, are gratefully acknowledged. Finally, special thanks goes to the infection prevention, employee health and other professionals across Texas that work to prevent sharps injuries and provided the data on which this report is based.

To obtain copies of this report, contact:

Infectious Disease Control Unit Mail Code: 1960 PO BOX 149347 Austin, TX 78714-9347 Phone: (512) 776-7676

This report is available online at:

http://www.sharpsreport.org

Suggested Citation:

Texas Department of State Health Services, Infectious Disease Control Unit 2016. Contaminated Sharps Injuries Among Healthcare Workers in Texas: 2013

Table of Contents

Background4
Public Health Significance4
Regulation, Reporting, and Policy Implementation4
Culture Surrounding Sharps Injuries5
Safety Engineered Devices6
Exposure Control Plans7
Bloodborne Pathogens of Concern7
HBV
HCV
HIV9
Methods9
Case Definition9
Study Population10
Data Analysis10
Limitations
Discussion
Appendix

Background

Public Health Significance

The transmission of bloodborne pathogens through contaminated sharps injuries represents a significant public health issue. It is estimated that close to 385,000 of these injuries occur annually in the United States (US) in hospitals alone, and medical services rendered outside of hospitals are thought to account for significantly more (CDC, 2008). Pathogens including hepatitis B virus (HBV), hepatitis C virus (HCV), and the human immunodeficiency virus (HIV) may be transmitted through blood and other potentially infectious materials in the healthcare setting. Costs associated with exposure incidents such as lab tests, evaluations, immediate and long-term treatments, employee time lost, and anxiety of exposed workers represent a mostly preventable burden on healthcare systems. An investigation of exposure costs in which four hospitals were presented with hypothetical exposure scenarios revealed costs as high as \$3,042 per incident; even when the source individuals were determined to be free of infection, hospitals still spent \$376 per incident on testing (O'Malley, 2007).

Regulation, Reporting, and Policy Implementation

With exposure associated expenses and the health risks to providers and patients in mind, federal and state regulators and professional organizations sought to reduce the rate of injuries involving contaminated sharps. Reduction efforts began with the release of Centers for Disease Control and Prevention (CDC) guidelines that urged caution when interacting with patients, regardless of if they harbored a transmissible disease. Shortly thereafter the Occupational Safety and Health Administration (OSHA) developed regulations that require employee education and training on bloodborne pathogen precautions, safety practices, compliance measures, and the implementation of safety engineered devices (OSHA, 2011). In 2001, following the enactment of the federal "Needlestick Prevention and Safety Act of 2000", OSHA updated its bloodborne pathogen regulations to include provisions mandating the reporting of contaminated sharps injuries and that employers maintain sharps injury records (OSHA, n.d.).

Currently 25 states have implemented OSHA's safety regulations. Facilities that operate within these states are eligible for up to 50% of the costs associated with the implementation of their safety plans (OSHA, 2010). Texas has not subscribed to OSHA standards. This means governmental entities, such as publicly funded hospitals and clinics, are not required to adhere to OSHA regulations. Texas has instead adopted, by statute, regulation to cover these facilities that mirrors OSHA's standard, notably implementation of safe workplace practices, use of safety engineered devices, exposure protocols, and reporting measures in the Texas Administrative Code (TAC) (25 TAC § 96, 2006; Texas Department of State Health Services, 2011).

Public health policy in Texas is carried out by local and regional health departments (Texas Department of State Health Services, 2011). Texas is divided into eleven public health regions and eight administrative regions. When a blood exposure incident occurs, the chief administrative officer of a covered facility is required to submit a "contaminated sharps injury report form" to the local health authority or the Department of State Health Services (DSHS) regional office if no local authority exists. After a review for completeness, the form is sent to the DSHS Infectious Disease Control Unit (IDCU) in Austin where it is compiled with other injury reports. Finally the reports are analyzed to better understand the factors surrounding sharps injuries and develop more effective prevention measures.

Culture Surrounding Sharps Injuries

Injury induced transmission of bloodborne pathogens in hospitals and clinics is a serious risk faced by healthcare professionals. Transmission of infections from patients to doctors, nurses, and technicians through accidental injuries is well documented (CDC, 2008). Reporting of the exposure circumstances not only provides valuable data to those concerned with improving healthcare safety through policy, but also is critical in settling insurance claims and workman's compensation. Reporting of exposures to potentially infectious materials is mandated both by OSHA's bloodborne pathogen standard and the analogous chapter of the Texas Administrative Code (25 TAC § 96, 2006; OSHA, 2011). Despite explicit regulations, the potential to contract serious

diseases, and forfeiture of insurance and worker's compensations in the event of infection, many healthcare workers choose not to report contaminated sharps injuries and under reporting is well documented (Doebbeling, 2003; Elmiyeh, 2004). One survey of healthcare workers in a general hospital revealed that 49% of those that had experienced sharps injuries failed to report at least one incident (Elmiyeh, 2004). A statewide survey of lowa's health care workers observed rates of non-reporting among physicians as high as 62% (Doebbeling, 2003). Another survey found that administrative data in two teaching hospitals only captured 36% of sharps injuries experienced by survey respondents (Boden, 2015). A perceived low risk of transmission and being too busy to report were most often cited as the reason injuries were not formally reported (Elmiyeh, 2004). Physicians and those that experience frequent injuries were less likely to report than other healthcare personnel or those that experience injuries less frequently (Doebbeling, 2003).

Safety Engineered Devices

One approach to reducing the incidence of sharps injuries is the use of safetyengineered devices. Included among these are retractable hypodermic needles, singleuse and pre-filled cartridge syringes, shielded needles, disposable scalpels, and blunttip suture needles. Implementation of these safer devices was encouraged by the enactment of the "Needlestick Safety and Prevention Act of 2000", which mandated usage of safer sharps when appropriate and employee involvement in the selection of these devices (OSHA, n.d.). A study evaluating the incidence of needlestick injuries among healthcare workers found a significant reduction in injury rates after the implementation of passive safety engineered devices (Goris, 2014). Prior to the implementation of passive safety engineered devices, the incidence of needlestick injuries was 2.21 injuries per 100,000 employee productive hours; after implementation of these devices the incidence dropped to 0.42 injuries per 100,000 employee productive hours (Goris, 2014).

Exposure Control Plans

While Texas has opted out of formal OSHA participation and regulation, Texas' model exposure control plan is explicitly designed to be analogous to that set forth by OSHA. All of OSHA's precaution standards and key elements are present in Texas' plan (25 TAC § 96, 2006; Texas Department of State Health Services, 2011). OSHA regulations dictate implementation of an exposure control plan in any facility in which there is potential for exposures (OSHA, 2011). There is some flexibility within individual plans, but they are all required to adhere to certain standards and include specific elements. These include:

- Identification of occupations and activities that present risks of exposure
- Establishing work environments and practices that limit risks to exposure (i.e. availability of hand washing stations, sharps disposal bins, and appropriate labeling of specimens and containers)
- Provision of appropriate personal protective equipment to those at risk, at no cost
- Maintaining a clean work environment
- Disposing of wastes appropriately
- Laundering or disposing of soiled garments
- Making hepatitis B vaccine available to those at risk at no charge
- Having a post exposure protocol when occupational exposures do occur (OSHA, 2001; OSHA, 2003).

The post exposure protocol must include source testing when possible, drawing of blood from the exposed to act as a base line, a physician consultation to evaluate risk, a physician opinion, and post exposure prophylactics when appropriate (OSHA, 2011).

Bloodborne Pathogens of Concern

Bloodborne pathogens have been associated with occupationally acquired infections in healthcare personnel; of significance are HBV, HCV, and HIV.

HBV

The CDC estimates that there are 700,000 to 1,400,000 persons currently living with a chronic hepatitis B infection in the US (CDC, 2013). HBV is transmitted through activities that involve percutaneous (i.e., puncture through the skin) or mucosal contact with infectious blood or body fluids (TDSHS, 2015). There are two stages to hepatitis B: acute and chronic (TDSHS, 2015). At the time of infection, people with hepatitis B are considered to have acute hepatitis B. In most cases their hepatitis B will resolve, but about 5% of adults become chronically infected (TDSHS, 2015). Symptoms of acute HBV infection include fever, anorexia, nausea, jaundice, dark urine, and pale feces (TDSHS, 2015). Persons with chronic HBV infection might be asymptomatic, have no evidence of liver disease, or have a spectrum of disease ranging from chronic hepatitis to cirrhosis or hepatocellular carcinoma (TDSHS, 2015). In the event of an HBV exposure, persons are administered hyperimmunoglobulin (high titer, hepatitis B virus surface antigen antibody) and the HBV vaccine in order to confer passive and active immunity respectively. Currently, extremely effective Hepatitis B vaccines are available and both OSHA and Texas' Administrative Code mandate that they be made available to healthcare workers at no cost throughout employment (25 TAC § 96, 2006; OSHA, 2011).

HCV

The CDC estimates that 3.2 million persons in the US live with chronic hepatitis C infections (CDC, 2013). People become infected with the Hepatitis C virus (HCV) by coming in contact with the blood or bodily fluids of an infected person. HCV infections are most commonly associated with sharing of needles, syringes, or other equipment to inject drugs, needlestick injuries in healthcare settings, and being born to a mother who has hepatitis C (TDSHS, 2015). Unlike HBV infection, HCV infection is much more likely to result in chronic hepatitis; HCV infection becomes chronic in approximately 75%–85% of cases (CDC, 2013). As with hepatitis B infections, if a person has been infected with hepatitis C for many years, his or her liver may be damaged. Symptoms of acute HCV infection are jaundice, fever, nausea, fatigue, and vomiting, though

approximately 70%–80% of people with acute Hepatitis C do not have any symptoms (TDSHS, 2015). For those exposed to the virus, alpha interferon reduces the chances of developing chronic hepatitis. The initial two direct acting oral antiviral agents were approved in 2011 and since then a number of additional medications have been approved for treatment of chronic hepatitis C infection. There is however no effective HCV vaccine available.

HIV

In the US it is estimated that 1.2 million people are currently infected with HIV; 490,000 of those infected with HIV have been diagnosed with AIDS (CDC, 2011). The main routes of transmission for the virus are through sexual contact, injection drug use, and perinatally from mother to child (TDSHS, 2016). Acute HIV infection presents with a fever, lethargy, rash of the arms, legs, and trunk, and swollen lymph nodes (CDC, n.d.). Progression of HIV infection to AIDS results in compromised host immunity and frequent and severe secondary opportunistic infections. In occupational healthcare exposures, the rates of transmission in mucocutaneous, non-intact skin, and percutaneous exposures are 0.1%, <0.1%, and 0.3%, respectively (CDC, 2008). Combinations of antiretroviral drugs designed to inhibit viral replication are effective at reducing viral loads in the body, however there is no cure for AIDS. There is currently no vaccine for HIV.

Methods

Case Definition

An incident is considered reportable if a percutaneous injury occurred from a sharp that was contaminated or possibly contaminated with blood or other potentially infectious materials.

Study Population

The study population consisted of employees from governmental entities in Texas who reported the 1447 occupational sharps injuries that occurred in 2013. Uncontaminated sharps injuries that occurred before the sharp was used for its intended purpose were not included. Such an incident did not pose a bloodborne pathogen transmission risk. Texas law does not require reporting from private healthcare facilities and any sharps reported to the DSHS from private facilities were removed from the data (25 TAC § 96, 2006).

Diverse sharps were represented in this study including disposable syringes, suture needles, surgical scalpels, surgical drills, and glassware items such as capillary tubes, flasks, and laboratory slides. Individual occupations of the injured HCW included, but were not limited to registered nurses, attending physicians, housekeeping staff, school nurses, medical students, and various types of medical technicians.

Data Analysis

Descriptive statistics, counts and percentages, were used to characterize the responses to each question. Comprehensive denominator data were not available; therefore no rates could be calculated. Cross tabulations were used to examine relationships between responses to different questions. Variables examined included geographic, temporal, gender and age distributions in addition to the type of sharps Involved.

Data Highlights

Public Health Region and County where Injury Occurred. As seen in Figure 1, the number of reported contaminated sharps injuries in each Health Service Region (HSR) is listed below the HSR number. Health Service Regions 6/5S and 2/3 had the most sharps injuries, each with more than 200 cases of sharps injuries.

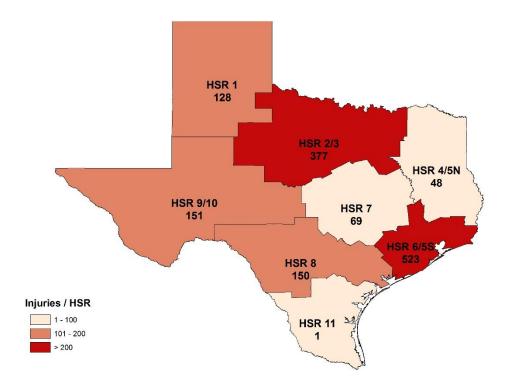


Figure 1. Reported injuries by Health Service Region

Facility where injury occurred. Out of 1447 reported injuries, 81.7% (1182) occurred in hospitals. Clinics reported the second highest number of injuries 7.9% (114) with emergency services, dental facility, school/college, and correctional facilities accounting for a combined total of 4.4% (63) (Table 1).

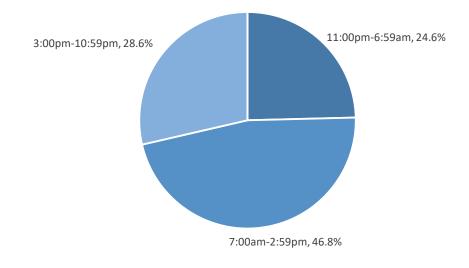
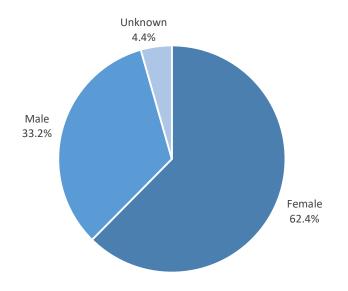
Facility	Number	Percent
Hospital	1182	81.7%
Clinic	114	7.9%
Other	49	3.4%
EMS/Fire/Police	19	1.3%
Unknown	18	1.2%
Dental Facility	16	1.1%
School/College	14	1.0%
Correctional Facility	14	1.0%
Laboratory (freestanding)	6	0.4%
Outpatient Treatment (e.g. dialysis, Infusion therapy)	4	0.3%
Residential Facility (e.g. MHMR, shelter)	4	0.3%
Home Health	4	0.3%
Medical Examiner Office/Morgue	3	0.2%
Total	1447	100.0%

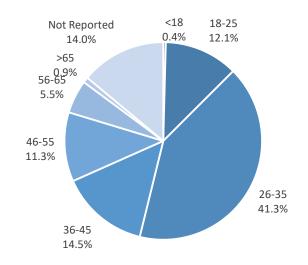
Table 1. Injuries by facility type

Occupation of the Injured Healthcare Worker. Table 2 shows the occupations that sustained the most injuries in 2013. Registered nurses sustained more injuries than any other single occupation, accounting for 24.5% of all reported incidents. Interns/Residents and a ttending physicians received 19.8% and 13.3% of reported injuries, respectively.

Job Type	Number	Percent
Registered nurse	355	24.5%
Intern/resident	286	19.8%
Attending Physician	193	13.3%
OR/Surgical Technician	88	6.1%
Student	68	4.7%
Other Technician	47	3.2%
All Others	368	25.4%
First Responders (EMT, Firefighter, Police)	28	1.9%
Unknown	14	1.0%
Total	1447	100.0%

Injury by Work Shift. Figure 2 shows the time of day, by shift, when the injuries occurred. The majority of injuries, 46.8%, occurred after 7am and before 3pm.


Figure 2. Time of day when reported injuries occurred

Gender and Injury. Almost two-thirds of the injuries occurred in females – 62.4% (Figure 3). The gender of the person who sustained the sharps injury is unknown in 4.4% of reported sharps injuries.

Age Distribution and Injury. The distribution of injury reports by age is presented in Figure 4. Twenty-six to thirty-five year olds reported more injuries than any other age group, with 41.3% of all injuries.

Figure 4. Age distribution of sharps injuries

Injury by Device Type. The data were categorized into the top five instrument types that caused injuries. Needles involving syringes accounted for 37.2% of all injuries (Table 3). Suture Needle sharps were the second highest at 20.9% of all injuries. IV Catheter/Needles, Scalpels and Winged Steel Needles each accounted for less than 10%. Other types of sharps, not included in the top five, accounted for a combined total of 19.8% of injuries. These included surgical drills, nails, teeth, forceps and other devices. A more detailed list of devices that caused injury can be found in the appendix.

Type of Sharp	Number	Percent
Needle/Syringe	539	37.2%
Suture Needle	303	20.9%
IV Catheter/Needle	118	8.2%
Scalpel	93	6.4%
Winged Steel Needle	90	6.2%
All Others	286	19.8%
Unknown	18	1.2%
Total	1447	100.0%

Table 3. Injuries by type of sharp device

Intended Sharps Use. The intended use of the device provides another perspective on the injuries and their prevention. Suturing and injections accounted for the largest proportions of injuries, 21.4% and 23.6% respectively (Table 4). Drawing blood or taking tissue samples accounted for an additional 13.7% of the injuries. For 19.8% of devices, the intended use of device was unreported or unknown.

Original Intended Use	Number	Percent
Injection, SC/ID/IM	341	23.6%
Suturing	309	21.4%
Draw Blood/Body Fluid/Tissue Sample	198	13.7%
IV/Central Line Use	101	7.0%
All Others	212	14.7%
Unknown	286	19.8%
Total	1447	100.0%

Table 4. Injuries by intended use of device

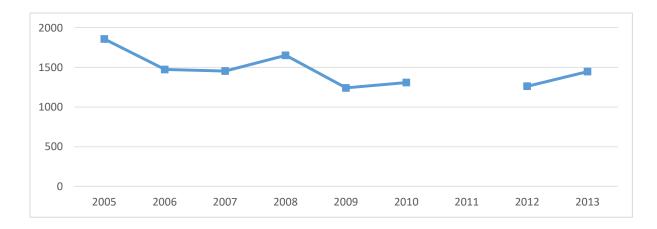
Safety Engineering Status. Table 5 breaks down injuries by whether or not the device had safety engineering protection. Nearly half (43.7%) of all devices involved in injuries did not have safety engineered protection compared to 35.8% that was safety engineered. 17.1% of reporters indicated they did not know if the device that caused the injury was safety engineered.

Was Device Safety-Engineered?	Number	Percent
Yes	518	35.8%
No	632	43.7%
Don't Know	247	17.1%
Unreported	50	3.5%
Total	1447	100.0%

Table 5. Safety engineered status of device causing injury

Safety Activated. Table 6 shows the activation status of sharps' safety mechanism at the time of injury for those that were reported to be safety engineered. 30.9% reported that the mechanism was fully activated at the time of injury; and 60.8% reported that the safety mechanisms on their devices were not activated.

Was the Safety Mechanism Activated?	Number	Percent
Yes	160	30.9%
No	315	60.8%
Don't Know	26	5.0%
Unreported	17	3.3%
Total	518	100.0%


Table 6. Status of safety mechanism at time of injury

Adherence to bloodborne pathogen precautions. Table 7 breaks down the occurrence of sharps injuries by the adherence to bloodborne pathogen precautions at the time of injury. These precautions have been adopted as the minimum standard by Texas law and listed in the exposure control plan developed by the DSHS (25 TAC § 96, 2006). Utilization of bloodborne pathogen precautions was high as demonstrated by 91.98% use of gloves at time of injury, 93.02% HBV vaccinations, 79.20% having received BBP training in past 12 months, and 94.0% had a sharps container available.

	Wearing	g Gloves at	HBV Vacc	inated?	BBP Tra	aining in	Sharps C	Container
	Time of Injury?				Past 12 mo.?		Avail	able?
	Num.	%	Num.	%	Num.	%	Num.	%
Yes	1331	91.98%	1346	93.02%	1146	79.20%	1360	94.0%
No	70	4.84%	27	1.87%	167	11.54%	17	1.2%
Don't Know	26	1.80%	47	3.25%	0	0	0	0
Unreported	20	1.38%	27	1.9%	134	9.26%	70	4.8%
Total	1447	100.00%	1447	100.00%	1447	100.00%	1447	100.00%

Table 7. Adherence to bloodborne pathogen precautions.

Sharps injury reports over the years. From 2005 to 2013 the number of contaminated sharps reports received by DSHS has fluctuated, but showed an overall downward trend. Reported sharps injury data from 2011 were unavailable and are not included in the following line graphs.

Figure 5. Number of sharps injuries reported: 2005-2013

Figure 6 shows the top five facility types in which sharps injuries were reported to have occurred over the same 7-year period. Hospitals reported approximately 80% of injuries every year. No other facility type accounted for more than 10% of injuries over this time period.

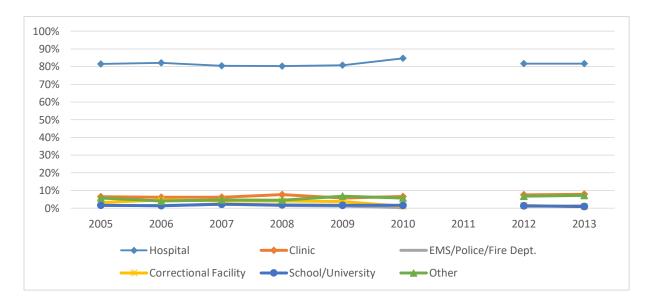


Figure 6. Distribution of sharps injuries by facility type: 2005-2013

Occupations reporting greatest proportion of sharps injuries. Figure 7 presents the distribution of reported sharps injuries among the top reporting occupations between 2005 and 2013. Registered nurses accounted for less than 25% of injuries reported from 2005 to 2008, but surpassed the 25% mark in 2009. In 2012, interns and residents accounted for the majority of sharps injuries for the first time since reporting started in 2005. However, in 2013 their rate decreased and the registered nurses returned to being the most frequent.

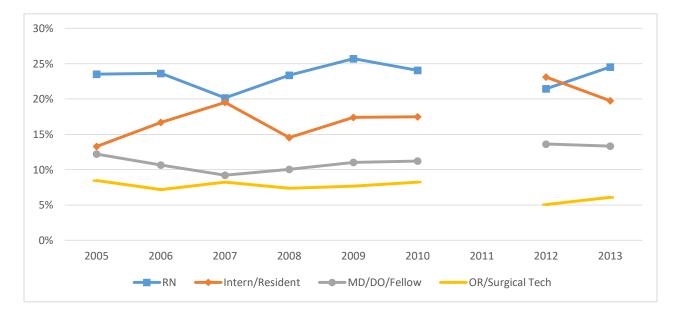
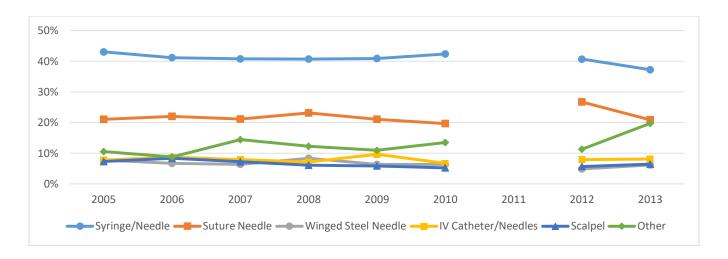



Figure 7. Occupations reporting the greatest proportion of sharps injuries: 2005-2013

Injury by sharp type over time. As with the distribution of injuries across facility types, the breakdown of injuries by the type of device remained fairly stable over the years (Figure 8). Syringes and suture needles were the devices that healthcare workers injured themselves with most often.

Figure 8. Injury by sharp type: 2005-2013

Injury by safety engineered status. Figure 9 depicts injury trends by safetyengineered status between 2005 and 2013. Non-Safety engineered devices continue to have the highest proportion of injuries. There was an overall decrease in the proportion of injuries from non-safety engineered devices with a corresponding increase in the proportion of injuries from safety engineered devices.

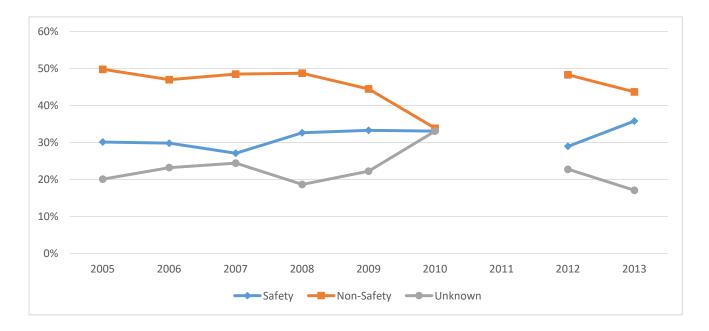


Figure 9. Injury by safety engineered status: 2005-2013

Limitations

This report has five important limitations:

- There were few denominator data to compute injury rates and therefore denominator data were not included. Good examples of denominator data would be:
 - a. The number of total sharps related procedures, broken out by type of sharps used, carried out by facilities in Texas each year within each region
 - b. The number, occupation and gender of healthcare workers at risk for sharps injuries each year.
- 2. Sharps injuries are known to be under-reported. Therefore, this report likely underestimates the total number of sharps injuries that occurred in government entities during 2013.
- 3. Many of the reporting forms were incomplete. Therefore, the report does not fully characterize the reported injuries.
- 4. This report also does not include data reported by private entities to the DSHS which are not required by statute to report. Therefore, this report is only representative for injuries occuring in governmental entities and not all Texas entities.
- 5. Data from 2011 were unavailable and therefore analysis of trends is incomplete.

Additionally, illogical responses to questions resulted in records being removed from the analysis. For example, a report indicating that the device in use did not have safety engineering protection and in a subsequent response indicating that the safety feature was fully activated.

Discussion

The two occupations that incurred the most sharps injuries are registered nurses and interns/residents. This is consistent with national data (Jagger, 2008; Sharma, 2009).

The gender disparity within the nursing profession may explain why approximately 2 females were injured for every 1 male. The largest age group (41.3%) that reported sharps injuries were younger healthcare workers (between the ages of 18-35). A survey conducted among medical school graduates indicated that underdeveloped manual skills and a stressful work environment contribute to injuries (Sharma, 2009). Providing additional training and practice to these two risk groups may be an effective way to reduce injuries.

Injection and suturing were most often cited as the intended uses of the sharps that caused injury. Combined these procedures were involved in 45% of all reported injuries. The two devices most commonly involved in the reported sharps injuries were syringes/needles (37.2%) and suture needles (20.9%). While progress has been made in the engineering of safer syringes, such as syringes with auto-retracting needles, needles remain as the top device for injuries. The simplicity of suture needles' design, essentially a curved hook with a loop for suture, limits its potential for safety-engineering. One safety approach is blunt suture needlepoints and other safety-engineered sharps, which were proven by multiple studies to be effective at reducing injury rates (CDC, 2008; Goris, 2014; Jagger, 2008).

Despite the emphasis on engineered safety solutions, 64.3% of injury reports indicated safety-engineering status was either absent or unknown. When devices did possess safety features, 26.1% of the injured healthcare workers reported the injury occurred while attempting to activate safety mechanisms or after activation. This may be due to the healthcare workers' stressful work environment, lack of proper training on devices or defective design. Ongoing diligence in evaluation of devices and staff training in their use by healthcare facilities would be an important step.

A more positive finding was that, despite being injured, healthcare professionals by and large adhered to the bloodborne pathogen precautions such as hepatitis B vaccination (93.0%), recent exposure risk training (79.2%) and the use of gloves (92.0%). Another positive finding is that trends over the years (excluding 2011) show that fewer sharps injuries are being reported since 2005. Ultimately, it's a facility's embrace of the culture

of safety that will lead to the lowest rates of sharps injuries. To facilitate that, the culture of safety must be part of the education of all future healthcare practitioners. Such a program would de-stigmatize accidental occupational injury and promote reporting and the correct use of safety devices.

Appendix

Table 1: Injuries by Facility Type	Number	Percent
Hospital	1182	81.7%
Clinic	114	7.9%
other	49	3.4%
EMS/Fire/Police	19	1.3%
Unknown	18	1.2%
Dental Facility	16	1.1%
School/College	14	1.0%
Correctional Facility	14	1.0%
Laboratory (freestanding)	6	0.4%
Outpatient Treatment (e.g. dialysis, Infusion therapy)	4	0.3%
Residential Facility (e.g. MHMR, shelter)	4	0.3%
Home Health	4	0.3%
medical examiner office/morgue	3	0.2%
Total	1447	100.0%

Table 2. Injuries by Work Area	Number	Percent
Surgery/Operating Room	457	31.6%
Patient/Resident Room	250	17.3%
Emergency Department	131	9.1%
Other	122	8.4%
Critical Care Unit	64	4.4%
Medical/Surgical Unit	60	4.1%
Medical/Outpatient Clinic	52	3.6%
Procedure Room	48	3.3%
Laboratory	45	3.1%
L & D Gynecology unit	44	3.0%
Dental Clinic	33	2.3%
Pre-op or PACU	26	1.8%
(blank)	21	1.5%
Radiology Department	13	0.9%
Autopsy/Pathology	10	0.7%
Home	9	0.6%
Floor, not Patient Room	8	0.6%
Pediatrics	8	0.6%
Infirmary	7	0.5%
Ambulance	6	0.4%
Nursery	6	0.4%

Rescue setting (non ER)	5	0.3%
Dialysis Room/Center	5	0.3%
Jail Unit	3	0.2%
Service/Utility Area (e.g. Laundry)	3	0.2%
Blood Bank Center/Mobile	2	0.1%
Clinic	2	0.1%
Endoscopy/Bronchoscopy/Cystoscopy	2	0.1%
Central Supply	2	0.1%
Field (non EMS)	2	0.1%
EMS/Fire/Police	1	0.1%
Total	1447	100.0%

Table 3. Injuries by Occupation	Number	Percent
Registered nurse	355	24.5%
Intern/resident	286	19.8%
Attending Physician (MD/DO)	139	9.6%
Other	139	9.6%
OR/Surgical Technician	85	5.9%
Phlebotomist/Venipuncture/IV Team	70	4.8%
Licensed Vocational Nurse	52	3.6%
Medical Student	39	2.7%
Fellow	37	2.6%
Housekeeper/Laundry	37	2.6%
Aide (e.g. CAN, HHA, Orderly)	29	2.0%
EMT/Paramedic	23	1.6%
Dental Student	22	1.5%
Physician Assistant	18	1.2%
CRN/NP	17	1.2%
Respiratory Therapist/Technician	17	1.2%
(blank)	14	1.0%
Clinical Lab Tech	13	0.9%
Dentist	11	0.8%
Radiologic Technician	9	0.6%
Nursing Student	7	0.5%
Dental Assistant/Technician	4	0.3%
Researcher	4	0.3%
Firefighter	4	0.3%
Morgue tech/autopsy tech	3	0.2%
Maintenance Staff	3	0.2%
Surgery Assistant/OR Tech	3	0.2%

School Personnel (not a nurse)	3	0.2%
Clerical/Administrative	2	0.1%
Hemodialysis Technician	1	0.1%
Police	1	0.1%
Grand Total	1447	100.0%

Table 4. Age Group	Number	Percent
<18	6	0.41%
>65	13	0.90%
18-25	175	12.09%
26-35	598	41.33%
36-45	210	14.51%
46-55	164	11.33%
56-65	79	5.46%
Not Reported	202	13.96%
(blank)		0.00%
Total	1447	100.00%

Table 5. Area of the Body Injured	Number	Percent
Hand	1374	95.0%
Arm	23	1.6%
Leg/Foot	14	1.0%
Face/head/neck	5	0.3%
Torso (front or back)	8	0.6%
(blank)	23	1.6%
Total	1447	100.0%

Table 6. Injuries by Sharp Type	Number	Percent
Needle/Syringe	539	37.2%
Suture Needle	303	20.9%
Other	222	15.3%
IV Catheter/Needle	118	8.2%
Scalpel	93	6.4%
Winged Steel Needle	90	6.2%
Lancet (Finger/Heel Stick)	25	1.7%
Unknown	18	1.2%
Other Blade	10	0.7%
Glass	9	0.6%

Total	1447	100.0%
(blank)		0.0%
Trocar	5	0.3%
Nail/Tooth	7	0.5%
Scissors	8	0.6%

Table 7. Injuries by Original Intended Use of Sharp	Number	Percent
Injection, Intra-Muscular/Subcutaneous/Intra-dermal,		
or other injection through the skin (syringe)	341	23.6%
Other	205	14.2%
Suturing, Skin	165	11.4%
Draw Venous Blood Sample	106	7.3%
Cutting	99	6.8%
Suturing	82	5.7%
Suturing, deep	62	4.3%
Start IV or set up Heparin lock (IV catheter or winged set-type needle)	62	4.3%
Unknown/Not Applicable	58	4.0%
Obtain body Fluid/tissue sample	54	3.7%
Finger stick/heel stick	49	3.4%
Draw arterial sample	38	2.6%
Dental	24	1.7%
(blank)	23	1.6%
Connect IV line (intermittent IV/ piggyback/IV		
infusion/other IV line connection)	21	1.5%
Wiring	19	1.3%
Other Injection into (or aspiration from) IV Injection Site or IV Port (syringe)	10	0.7%
Remove Central Line/Porta Catheter	8	0.7%
·		
Contain a Specimen or Pharmaceutical (glass item)	7	0.5%
Electrocautery	6	0.4%
Drilling	5	0.3%
Heparin or Saline Flush	2	0.1%
Dialysis	1	0.1%
Total	1447	100.0%

Table 8. When and How the Injury Occurred	Number	Percent
Between steps of a multistep procedure (carrying,		
handling, passing/receiving syringe/instrument, etc.)	332	22.9%
Other	243	16.8%
Suturing	140	9.7%
Unsafe Practice	101	7.0%
Patient moved during procedure	92	6.4%
Activating Safety Device	90	6.2%
(blank)	88	6.1%
Interaction with another person	83	5.7%
Found in an inappropriate place (e.g. Table, bed, floor,		
trash)	70	4.8%
Use of sharps container	63	4.4%
Recapping	46	3.2%
Disassembling device or equipment	31	2.1%
Device Malfunctioned	23	1.6%
Laboratory Procedure/Process	20	1.4%
Use of IV/central line	11	0.8%
Preparation for reuse of instrument (Cleaning, Sorting,		
disinfecting, Sterilizing, etc.)	9	0.6%
Unknown	3	0.2%
Device Pierced the Side of the Disposal Container	2	0.1%
Total	1447	100.0%

Table 9. Safety Engineered Protection	Number	Percent
Yes	518	35.8%
No	632	43.7%
Don't Know	247	17.1%
Unreported	50	3.5%
Total	1447	100.0%

Table 10. Protective Mechanism Activation	Number	Percent
Yes	160	30.9%
No	315	60.8%
Don't Know	26	5.0%
Unreported	17	3.3%
Total	518	100.0%

Table 11. When During Device Activation Did Injury		
Occur	Number	Percent
After	81	15.6%
Before	245	47.3%
During	132	25.5%
(blank)	57	11.0%
After	3	0.6%
Total	518	100.0%

Table 12. Was the injured person wearing gloves	Number	Percent
Yes	1331	91.98%
No	70	4.84%
Don't Know	20	1.38%
(blank)	26	1.80%
Total	1447	100.00%

Table 13. Was the injured person vaccinated for		
Hepatitis B	Number	Percent
Yes	1346	93.02%
No	27	1.87%
Don't know	47	3.25%
(blank)	27	1.9%
Total	1447	100.00%

Table 14. Was a sharps container available for		
disposal	Number	Percent
Yes	1360	94.0%
No	17	1.2%
(blank)	70	4.8%
Total	1447	100.00%

Table 15. Did injured person receive exposure controltraining within last 12 months	Number	Percent
Yes	1146	79.20%
No	167	11.54%
(blank)	134	9.26%
Total	1447	100.00%

References

Bouchard, M., & Navas-Martin, S. (2011). Hepatitis B and C virus hepatocarcinogenesis: lessons learned and future challenges. *Cancer Letters.* 305, 123-143.

Boden, L., Petrofsky, V., Hopcia, K., Wagner, G., & Hashimoto, D., (2015). Understanding the hospital sharps injury reporting pathway. *American Journal of Industrial Medicine*. 58, 282-289.

CDC (2008). Preventing needlesticks and other sharps injuries: everything you need to know, part 1: background. Retrieved from: www.cdc.gov/sharpssafety/tools.html.

CDC (2013). Viral hepatitis surveillance. Retrieved from: www.cdc.gov/hepatitis/statistics/2013surveillance/pdfs/2013hepsurveillancerpt.pdf

CDC (2014). Monitoring selected national HIV prevention and care objectives by using HIV surveillance data— United States and 6 dependent areas—2012. Retrieved from: www.cdc.gov/hiv/pdf/surveillance_report_vol_19_no_3.pdf

CDC (n.d.). Patient Information Sheet – Acute HIV Infection. Retrieved from: www.cdc.gov/hiv/pdf/prep_gl_patient_factsheet_acute_hiv_infection_english.pdf

Doebbeling, B., Vaughn, T., McCoy, K., Beekmann, S., Woolson, R., Ferguson, K., & Torner, J. (2003). Percutaneous injury, blood exposure, and adherence to standard precautions: are hospital-based health care providers still at risk? *Clinical Infectious Diseases* 37. 1006-1013.

Elmiyeh, B., Whitaker, I.S., James, M.J., Chahal, C.A., Galea, A., and Alshafi, K. (2004). "Needle-stick injuries in the National Health Service: a culture of silence." J R Soc Med. 97. Goris, A., Glotzer, J., Gemeinhart, N., Wojtak, L., Zirges, C., Babcock, H., (2014). "Reducing needlestick injuries from active safety devices: A passive safety-engineered device trial." Association of Occupational Health Professionals in Healthcare 41: S80.

Jagger, J., Perry, J., Gomaa, A., and Phillips, E. (2008). "The impact of U.S. policies to protect healthcare workers from bloodborne pathogens: the critical role of safety-engineered devices." Journal of Infection and Public Health 1: 62-71.

O'Malley, E., Scott II, E., Gayle, J., Dekutoski, J., Foltzer, M., Lundstrom, T., Welbel, S., Chiarello, L., Panlilio, A (2007). "Costs of management of occupational exposures to blood and body fluids." Infect Control Hosp Epidemiol 28: 774-782.

OSHA (2003). "Model plans and programs for the OSHA bloodborne pathogens and hazard communications standards." Retrieved from: www.osha.gov/Publications/osha3186.pdf.

OSHA (n.d.). Frequently asked questions – Needlesticks. Retrieved from: www.osha.gov/needlesticks/needlefaq.html

OSHA (2011). "Occupational safety and health standards: Bloodborne pathogens." Retrieved from:

www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=standards&p_id=10051.

Sharma, G. K., Gilson, M. M., Nathan, H. and Makary, M. A. (2009). "Needlestick injuries among medical students: Incidence and implications." Academy of Medicine 84: 1815-1821.

25 TAC § 96 (2006). "Department of State Health Services: Bloodborne pathogen control." 2011, Retrieved from: http://texreg.sos.state.tx.us/public/readtac\$ext.ViewTAC?tac_view=4&ti=25&pt=1&ch=9 6&rl=Y

Texas Department of State Health Services (2011). "Exposure Control Plan." Retrieved from: www.dshs.state.tx.us/WorkArea/linkit.aspx?LinkIdentifier=id&ItemID=23853

Texas Department of State Health Services (2011). "Health services regions." Retrieved from: www.dshs.state.tx.us/rls/RLHS042211.shtm.

Texas Department of State Health Services (2011). "Texas contaminated sharps injuries: 2008 report." 2011, Retrieved from:

www.dshs.state.tx.us/idcu/health/infection_control/bloodborne_pathogens/report/

Texas Department of State Health Services (2015). Hepatitis B. Retrieved from: www.dshs.state.tx.us/idcu/disease/hepatitis/hepatitis_b/

Texas Department of State Health Services (2015). Hepatitis C. Retrieved from: www.dshs.state.tx.us/idcu/disease/hepatitis/hepatitis_c/

Texas Department of State Health Services (2016). Bloodborne Pathogens. Retrieved from: www.dshs.state.tx.us/idcu/health/infection_control/bloodborne_pathogens/plan/

Texas Department of State Health Services (2016). Texas DSHS HIV/STD Program – HIV/AIDS. Retrieved from: www.dshs.state.tx.us/hivstd/info/hiv/default.shtm