CANCER IN TEXAS 2025

Acknowledgements

Cancer Reporters

The Texas Cancer Registry (TCR) thanks all cancer reporters for their dedication, hard work, and collaboration. Their efforts help Texas meet national high-quality and timeliness standards, and they play a significant role in contributing to TCR's mission and the fight against cancer.

TCR Funding

The Texas Legislature appropriates funds to the Texas Department of State Health Services (DSHS) to operate TCR. These appropriations include general revenue to the DSHS budget and general obligation bond proceeds appropriations through the Cancer Prevention and Research Institute of Texas (CPRIT). TCR also acknowledges funding from the following federal agencies:

- The Centers for Disease Control and Prevention (CDC) National Program of Cancer Registries (NPCR)
 provides financial support under Cooperative Agreement #1NU58DP007140. The content of this report is
 solely the responsibility of the authors and does not necessarily represent the official views of the CDC or
 the US Department of Health and Human Services (HHS).
- The National Cancer Institute (NCI) Surveillance, Epidemiology and End Results (SEER) Program provides financial support under Contract #75N91021D00011.

Suggested Citation

Texas Cancer Registry, Cancer Epidemiology and Surveillance Branch. *Cancer in Texas 2025*. Austin, TX. Texas Department of State Health Services, 2025.

Introduction

Purpose

DSHS is required to maintain TCR — a statewide population-based registry that serves as the foundation for measuring the cancer burden in Texas. Texas Health and Safety Code, Section 82.007, requires DSHS to publish an annual report to the legislature summarizing information collected by TCR. CDC NPCR requires TCR to create and disseminate a comprehensive cancer surveillance report. The Cancer in Texas 2025 report serves these dual purposes.

The Cancer in Texas report is compiled annually to provide an overview of cancer incidence, mortality, prevalence, survival, and other statistics from the most recent data available. This year's report covers:

- Total number of Texas cancer survivors;
- Estimated numbers of new cancer cases and deaths in 2025;
- Statistics for common cancer sites by sex and racial/ethnic groups;
- The burden of liver cancer in Texas; and
- Information about how TCR data are used for statistics, public health surveillance, and research.

About the Texas Cancer Registry

TCR collects information about all reportable cancers diagnosed or treated in the state. TCR's goal is to collect, maintain, and disseminate the highest quality cancer data that will contribute to improving early diagnoses, treatments, survival, and quality of life for all cancer patients.

TCR is the primary source for population-based cancer data in Texas and serves as the foundation for measuring the state's cancer burden, comprehensive cancer-control efforts, disparities in cancer occurrence, and progress in cancer prevention, diagnosis, treatment, and survivorship. TCR also supports a wide range of cancer-related research. Public health organizations, academic institutions, and the private sector rely on timely, complete, and accurate cancer data from TCR.

TCR is one of the largest cancer registries in the United States. It is one of 12 state registries funded by both the NCI SEER Program and CDC NPCR. TCR joined the SEER Program in 2021.

TCR currently meets NPCR high-quality data standards, and is Gold Certified by the North American Association of Central Cancer Registries (NAACCR).

Cancer in Texas 2025 Report: An Overview

An estimated 1,052,732 Texans are cancer survivors.

This is 3.5 percent of the Texas population. These Texans were diagnosed with cancer between 1995-2021 and were alive as of January 1, 2022.

Cancer Incidence

- In 2025, an estimated 148,598 new cancer cases are expected to be diagnosed in Texas.
- The overall age-adjusted incidence rate for all invasive (malignant) cancers diagnosed during 2018-2022 in Texas was 430.6 cases per 100,000 population.

Cancer Mortality

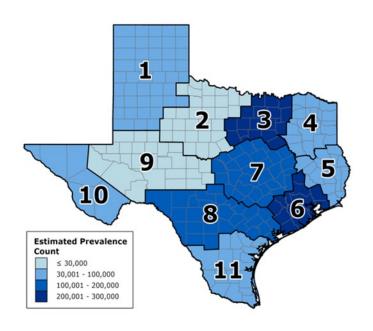
- Cancer is the second leading cause of death in Texas. In 2025, an estimated 48,814 cancer deaths are expected among Texans.
- The 2018-2022 overall age-adjusted cancer death rate in Texas was 143.7 deaths per 100,000 population.

Cancer Survival

- Texans who are diagnosed with invasive cancer are, on average, about 68 percent as likely as those without cancer to live for at least five years after their diagnosis.
- Relative survival rates for Texans vary by cancer site. The five-year relative survival rates for prostate and female breast cancers are 98 and 91 percent, respectively, whereas relative survival rates are much lower for other cancers, including liver (hepatic) and intrahepatic bile duct cancer (IHBD), and pancreatic cancer (22 and 14 percent, respectively).
- Survival rates also vary significantly by cancer stage at diagnosis. The five-year relative survival rate for cancer overall is highest for Texans diagnosed at an early stage of disease (90 percent). If cancer has spread to distant organs or tissues, the five-year relative survival rate drops to 36 percent.

The Burden of Liver Cancer

- Liver and IHBD cancer is one of the few cancers for which both incidence and mortality rates have increased in Texas in recent decades.
- From 1995 to 2022, incidence rates for liver and IHBD cancer have more than doubled and mortality rates have increased by 43 percent.
- More than 4,500 Texans are expected to be diagnosed with liver and IHBD cancer in 2025, and nearly 3,000 Texans are expected to die from this disease.
- Texas suffers from the highest liver and IHBD cancer incidence rates in the nation.
- An estimated 16 years of life are lost for every liver and IHBD cancer death in Texas. In other words, a
 Texan would have lived an additional 16 years, on average, if they had not died prematurely from liver
 and IHBD cancer.


Living with Cancer

Cancer prevalence is the number of people alive on a certain date who have ever been diagnosed with cancer. It provides an estimate of the number of cancer survivors and is a function of incidence (new cases diagnosed) and survival. In 2022, there were an estimated 1,052,732 cancer survivors in Texas. **Figure 1** shows the estimated number of cancer survivors by Public Health Region. These Texans were diagnosed with cancer between 1995-2021 and were alive as of January 1, 2022.

The number of cancer survivors in Texas is increasing for many reasons. More people are being diagnosed with cancer, treatment is improving, and cancers are being caught earlier. Also, the number of people living with cancer increases as the population grows.

Early diagnosis plays a critical role in determining the prognosis and long-term survival of individuals with cancer. Detecting cancer at an early stage when it is small and localized increases the chances of successful treatment and cure.

Figure 1. Estimated Number of Cancer Survivors by Texas Public Health Region

Cancer survivors are defined as people who have ever been diagnosed with cancer. This includes individuals currently living with cancer, who may be undergoing treatment, and those with a history of cancer, who are currently free of cancer.

For more information, visit dshs.texas.gov/texas-cancer-registry/cancer-statistics.

Estimates for New Cancer Cases and Deaths for 2025

TCR used the most recent five years of complete data available (2017-2022) to estimate the number of expected new cancer cases and deaths for 2025. The most recent cancer data available lag two to three years behind the current calendar year because of the time needed for data collection, consolidation, quality control, and dissemination. Data from 2020 were excluded because the modeling and forecasting programs used are not designed to accommodate large single-year data anomalies (resulting from the impact of the COVID-19 pandemic). Estimates are based on invasive cancers only, which are cancers that have spread beyond the layer of tissue in which they originally developed and are growing into healthy, surrounding tissue. Invasive cancer excludes carcinoma in situ, which is a condition where a group of abnormal cells are found only in the place where they first formed and have not spread to nearby tissue.

In 2025, an estimated 148,598 new cancer cases are expected to be diagnosed in Texas. This includes 72,121 cancers in women and 76,477 in men. Table 1 provides estimates of new cases for leading cancer sites and estimates of deaths for leading causes of cancer death, by sex, in 2025. The most common cancers are breast, prostate, lung, and colorectal, which account for nearly half of all cancer diagnoses in Texas. Cancer remains the second leading cause of death among Texans. In 2025, an estimated 48,814 Texans are expected to die from cancer (22,740 women and 26,074 men). Lung cancer is the most common cause of cancer death in Texas, followed by colorectal, pancreatic, breast, and liver and IHBD cancers. These five cancers account for more than half of all cancer deaths.

Table 1. Estimated New Cases for Leading Cancer Sites and Estimated Deaths for Leading Causes of Cancer Death, by Sex, 2025

Leading Cancer Sites for Women

Cancer Site	Estimated New Cases	% of Total
Breast	22,039	30.6
Lung and Bronchus	7,686	10.7
Colon and Rectum	5,911	8.2
Uterus	4,673	6.5
Thyroid	2,747	3.8

Leading Causes of Cancer Death for Women

Cancer Site	Estimated Deaths	% of Total
Lung and Bronchus	4,600	20.2
Breast	3,575	15.7
Colon and Rectum	2,038	9.0
Pancreas	1,739	7.6
Ovary	1,098	4.8

Leading Cancer Sites for Men

Cancer Site	Estimated New Cases	% of Total
Prostate	18,950	24.8
Lung and Bronchus	8,572	11.2
Colon and Rectum	7,257	9.5
Kidney and Renal Pelvis	4,506	5.9
Urinary Bladder	4,064	5.3

Leading Causes of Cancer Death for Men

Cancer Site	Estimated Deaths	% of Total
Lung and Bronchus	5,620	21.6
Colon and Rectum	2,627	10.1
Prostate	2,509	9.6
Liver and Intrahepatic Bile Duct	2,008	7.7
Pancreas	1,877	7.2

For more information, visit dshs.texas.gov/texas-cancer-registry/cancer-statistics.

Cancer Incidence by Race/Ethnicity

Cancer incidence is the number of newly diagnosed cases that occur during a specific time period, most often one year. An age-adjusted incidence rate is a widely used statistical measure that allows groups to be compared as it adjusts for differences in age distributions. TCR generated age-adjusted cancer incidence rates for all sites combined (Figure 2) and for the leading five cancer sites (Figure 3) to examine disparities in cancer occurrence.

Cancer incidence rates vary among racial and ethnic groups in Texas. TCR analyzed age-adjusted cancer incidence data by race/ethnicity to examine differences in cancer occurrence among these groups.

Similar to findings in the U.S., overall cancer incidence rates (per 100,000 population) were highest among Non-Hispanic (NH) White Texans (462.4), followed by NH Black (460.1), Hispanic (371.3), NH American Indian/Alaska Native (342.7), and NH Asian and Pacific Islander (277.3) Texans, as shown in **Figure 2**. Compared to the U.S., cancer incidence rates for Texas NH White, NH Asian and Pacific Islander, and NH American Indian/Alaska Native Texans are lower. However, for NH Black and Hispanic Texans, cancer incidence rates are higher compared to the U.S. rates.

Figure 2. Cancer Incidence Rates by Race/Ethnicity, Texas and U.S., 2018-2022

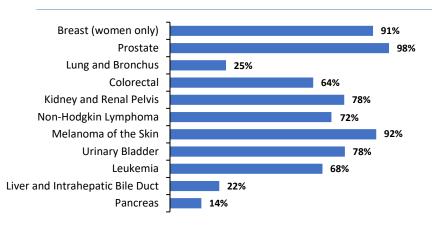
For more information, visit <u>dsh</u>s.texas.gov/texas-cancer-registry/cancer-statistics.

Cancer Incidence by Race/Ethnicity

140 Non-Hispanic (NH) White **Texas Women** Age-Adjusted Incidence Rates per 100,000 Hispanic 120 **NH Black** NH Asian/Pacific Islander 100 NH American Indian/Alaska Native 80 60 40 20 **Breast** Lung and Bronchus Colorectal Uterine Thyroid **Cancer Types** 140 Non-Hispanic (NH) White Texas Men Age-Adjusted Incidence Rates per 100,000 Hispanic 120 **NH Black** NH Asian/Pacific Islander 100 NH American Indian/Alaska Native 80 60 40 20 0 Lung and Bronchus Kidney and Renal Pelvis **Prostate** Colorectal **Cancer Types**

Figure 3. Incidence Rates for Leading Cancers by Sex and Race/Ethnicity, Texas, 2018-2022

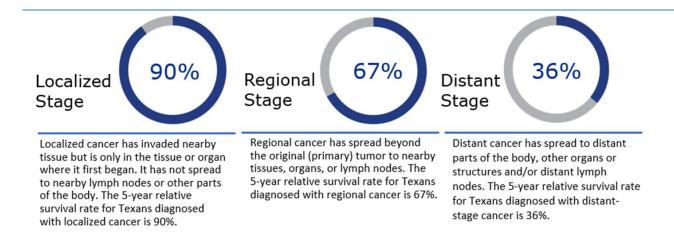
<u>Women</u>: As shown in **Figure 3**, NH White and Black women had the highest rates of breast, lung and bronchus, and colorectal cancers. For uterine cancer, rates were highest among Hispanic and NH Black women.


<u>Men</u>: NH Black men had the highest rates of prostate, lung and bronchus, and colorectal cancers. Hispanic and NH Black men had the highest rates of kidney and renal pelvis cancer, whereas the rate of urinary bladder cancer was more than twice as high among NH White men compared to all other groups.

Cancer Survival

Five-year relative survival is a commonly used statistic to estimate cancer survival. It represents the percentage of people who have survived for five years after their cancer diagnosis compared to those without cancer. Survival statistics provide an overall picture, but each person is unique, and their survival time may be higher or lower.

The estimated five-year relative cancer survival rate in Texas is 68 percent. This means that Texans who are diagnosed with cancer are about 68 percent as likely as those without cancer to live for at least five


Figure 4. Five-Year Relative Survival (%) by Cancer Type

years after their diagnosis. The relative cancer survival rate is the same in the U.S.

Survival rates vary significantly by several factors. One important factor is cancer type, as shown in Figure 4. The estimated five-year relative survival rates for the most common cancers — female breast and prostate cancers — are 91 percent and 98 percent, respectively. The lowest estimated five-year survival rates among the most commonly diagnosed cancers are for liver and IHBD and pancreatic cancers (22 percent and 14 percent, respectively). Cancer stage at diagnosis also significantly influences survival rates, as shown in Figure 5. Staging is a way of classifying how much cancer is in the body and how far it has spread. The chart above and graphic below are based on individuals diagnosed with cancer between 2015 to 2021 and followed through December 31, 2022.

Figure 5. Five-Year Relative Survival Percentage by Stage at Diagnosis

To access additional survival statistics for Texas, visit dshs.texas.gov/texas-cancer-registry/cancer-statistics.

Special Topic: Liver Cancer Incidence Rates and Trends

Liver and Intrahepatic Bile Duct Cancer in Texas

Liver and IHBD cancer includes primary cancer that starts in either the liver or in the bile ducts within the liver. An estimated seven in 10 new liver and IHBD cancer cases are attributable to modifiable risk factors, including hepatitis B and C virus infections, cigarette smoking, excess body weight, and alcohol consumption. Liver and IHBD cancer is one of the few types for which both incidence and mortality rates have been increasing in Texas in recent decades. From 1995 to 2022, incidence rates have more than doubled and mortality rates have increased by 43 percent. In addition, Texas suffers from the highest liver and IHBD cancer incidence rates in the nation.

Texas men are disproportionately impacted by liver and IHBD cancer compared to women. Age-adjusted incidence rates are 2.7 times higher, and mortality rates are 2.3 times higher in men. The overall age-adjusted incidence rate among men is 18.9 cases compared to 7.0 cases per 100,000 in women. Similarly, the overall age-adjusted mortality rate among men is 12.1 versus 5.2 deaths in women (per 100,000).

In addition to differences by sex, notable differences in incidence rates by race/ethnicity exist in Texas. As shown in **Figure 6**, age-adjusted incidence rates are highest among Hispanic men (28.3 cases per 100,000) and Hispanic women (11.7 cases per 100,000) residing in Texas, compared to all other race/ethnicity groups. Non-Hispanic (NH) Black and NH Asian/Pacific Islander Texans had higher rates in both men and women compared to NH White and NH American Indian/Alaska Native Texans.

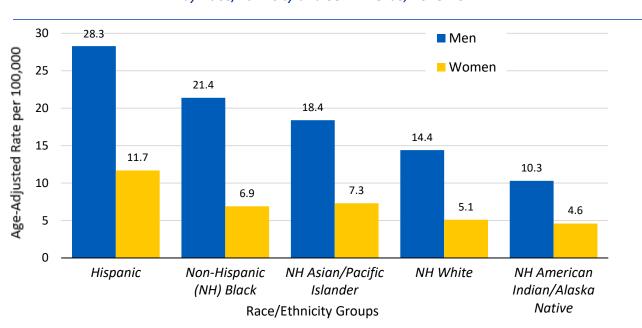
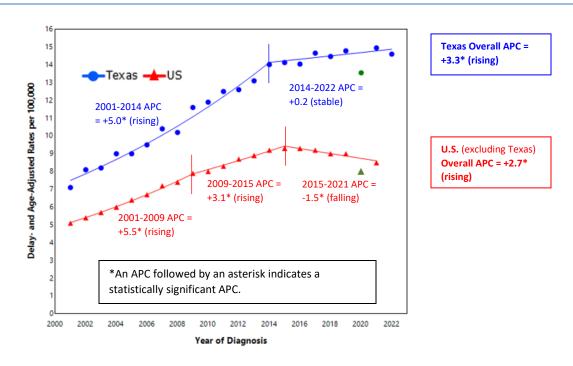


Figure 6. Liver and Intrahepatic Bile Duct Cancer Incidence Rates by Race/Ethnicity and Sex in Texas, 2018-2022


¹ Islami et al. CA Cancer J Clin. 2024;74(5):405-432. pubmed.ncbi.nlm.nih.gov/38990124/

Special Topic: Liver Cancer Incidence Rates and Trends

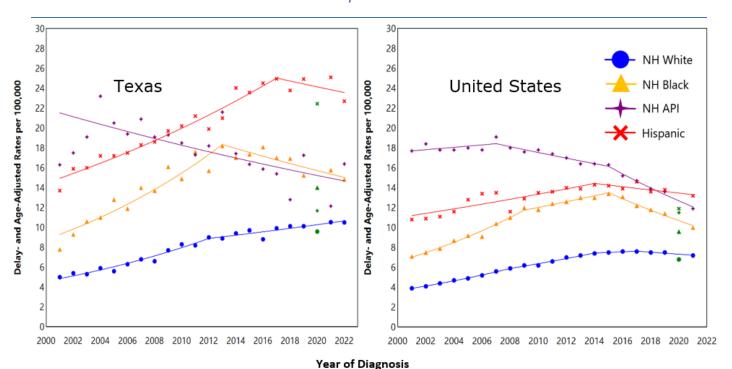
Hepatocellular Carcinoma in Texas and the United States

The most common type of liver cancer is hepatocellular carcinoma (HCC), accounting for approximately 90 percent of liver cancers diagnosed among Texans and 87 percent of liver cancers diagnosed in the U.S. The burden of HCC is a significant public health problem in Texas. In 2025, nearly 3,500 Texans are expected to be diagnosed with HCC, and the HCC five-year relative survival rate remains low (23 percent). In addition, **Texas has the highest HCC incidence rates in the nation**, with 14.6 cases compared to 8.5 cases per 100,000 population in the rest of the U.S. **Figure 7** below shows delay- and age-adjusted incidence trends for Texas (blue) compared to the rest of the U.S. (red) using statistical modeling to capture changes in trends.² For more information on delay-adjustment, refer to the *Technical Notes*. To assess the magnitude of trends, TCR calculated the annual percent change (APC). This metric represents the average percent change in rate from year to year during the analysis period. Overall, HCC incidence rates have risen in both Texas and the rest of the U.S. for over two decades. However, the gap widened between Texas and the rest of the U.S. in recent years. In 2015, rates peaked for the rest of the U.S., then began to fall, whereas Texas has not experienced a similar decline.

Figure 7. Trends in Hepatocellular Carcinoma Incidence Rates, Texas Compared to the U.S.

Diagnosis year 2020 (green symbols in graph) was excluded from trend analyses, in accordance with NCI and CDC guidance, given the decline in cancer diagnoses resulting from the COVID-19 pandemic.

² Using regression, NCI's Joinpoint Trend Analysis Software enables a user to test whether an observed change in trend is statistically significant and determine at what point in time (referred to as a joinpoint) the trend changes.


Special Topic: Liver Cancer Incidence Rates and Trends

Differences in Hepatocellular Carcinoma Incidence Rates and Trends

HCC disproportionately affects certain subpopulations in both Texas and the U.S. Individuals born between 1945 and 1965 have higher incidence of hepatitis C virus (HCV) infection and associated HCC. The higher incidence is attributed to specific historical and medical circumstances that led to increased exposure to the virus in this generation.

There are notable differences by race/ethnicity in both Texas and the U.S. Historically, NH Asian/Pacific Islander men have experienced the highest HCC incidence rates in the nation, largely attributed to greater prevalence of hepatitis B virus (HBV) infection. However, HCC rates among Hispanics surpassed those among NH Asian/Pacific Islanders in the U.S. (around 2019) and a decade earlier in Texas (around 2009), as shown in **Figure 8**. These differences between groups in Texas — for example, differences in rates between Hispanics and NH White populations — are also more pronounced in Texas compared to the rest of the U.S. In addition, incidence rates in Texas are higher across all race/ethnicity groups compared to their U.S. counterparts. Overall, Hispanics experience the highest HCC incidence rates in both Texas and the U.S. Importantly, these rates are higher among Texas-based Hispanics compared to Hispanics in other states and have increased more rapidly since 2001.

Figure 8. Trends in Hepatocellular Carcinoma Incidence Rates by Race/Ethnicity, Texas Compared to the U.S.

- Abbreviations: NH = Non-Hispanic; API = Asian/Pacific Islanders
- Diagnosis year 2020 (green symbols in graph) was excluded from trend analyses, in accordance with NCI and CDC guidance, given the decline in cancer diagnoses resulting from the COVID-19 pandemic.

Texas Cancer Statistics and Data Visualizations

TCR has made significant efforts to ensure Texas cancer data are available and accessible. The following online resources include TCR data and provide information on the burden of cancer in Texas.

TCR Website

dshs.texas.gov/tcr/

The TCR website offers a wide variety of data products, including statistical tables and reports. It also includes information for those interested in obtaining data for research.

Texas Cancer Data Visualizations Tool (TxCanViz)

cancer-rates.info/tx

The Texas Cancer Visualizations Tool (TxCanViz) allows users to customize cancer incidence and mortality rate tables and maps by cancer site, sex, year, race/ethnicity, county, public health region, council of government, metro statistical area, or micro statistical area. Rates and counts can be examined by early and late stages for breast, colorectal, and cervical cancers. New this year, the tool includes a childhood cancer module that allows for customized cancer incidence rates among children and adolescents (ages 0-19 years).

USCS Data Visualizations Tool

gis.cdc.gov/cancer/USCS/#/

The U.S Cancer Statistics (USCS) Data Visualizations Tool provides information on the numbers and rates of new cancer cases and deaths at the national, state, and county levels. Additional statistics include trends, prevalence, and survival. Data for Texas are available by sex, age, race and ethnicity, and geography.

CiNA Explorer

apps.naaccr.org/explorer/

Cancer in North America (CiNA)
Explorer is an interactive tool that provides easy access to a wide range of cancer statistics.
Detailed statistics are available for Texas by cancer site, sex, race/ethnicity, age, and stage.

SEER*Explorer

<u>seer.cancer.gov/statistics-</u> network/explorer/

SEER*Explorer is an interactive website that shows a wide range of SEER cancer statistics. It includes detailed statistics for specific cancer sites by sex, race/ethnicity, and age. For a selected number of cancer sites, statistics are available by stage and histology.

NCCR*Explorer

nccrexplorer.ccdi.cancer.gov/

NCCR*Explorer is an interactive tool that provides incidence and survival statistics for cancers in children, adolescents, and young adults diagnosed from 1999 onward using data from the National Childhood Cancer Registry (NCCR). Detailed statistics are available by sex, race/ethnicity, and age, allowing for comparison across cancer sites and subsites.

CDC/NCI State Cancer Profiles

statecancerprofiles.cancer.gov

State Cancer Profiles provides a dynamic view of cancer statistics for prioritizing cancer control efforts across the nation. The tool includes data on incidence, mortality, risk factors for cancer, and cancer screening by state.

National Environmental Public Health Tracking Network Data Explorer

ephtracking.cdc.gov/DataExplorer/

CDC's Data Explorer Tool can be used to create maps, charts, and tables to explore different health topics, including cancer. Available statistics include incidence rates, prevalence, and standardized incidence ratios.

Research Using TCR Data

TCR Data Use by the Numbers

New date including reports,

New data products, including statistical tables, reports, and data briefs, created and disseminated by TCR epidemiologists each year. **72**

Average number of publications in peerreviewed journals that use TCR data each year. **105**

Current number of Institutional Review Board (IRB)-approved studies that use TCR data.*

116

TCR data currently support \$116 million in grant funding.* 364

Average number of data requests completed by TCR epidemiologists each year.

TCR Collaborations through Data Linkages

*Current as of September 1, 2025

TCR collaborates extensively with partners across the agency, state, and country through conducting probabilistic data linkages in support of cancer research studies. Many of these linkages involve TCR epidemiologists linking a study's cohort data to the TCR database to obtain cancer outcomes on the study's participants. A selection of studies and projects that link with TCR data are shown below:

SEER-Medicare

healthcaredelivery.cancer.gov/seermedicare/

The Dallas Heart Study

<u>utsouthwestern.edu/departments/internal-medicine/research/dallas-heart/</u>

Mexican American (Mano a Mano) Cohort Study mano-mano.us

Parkland-UT Southwestern PROSPR Research Center: Colon Cancer and Cervical Cancer Screening

<u>healthcaredelivery.cancer.gov/prospr/</u>

Million Person Study

<u>orise.orau.gov/health-surveillance/research/million-</u> person-study.html

World Trade Center Health Registry

nyc.gov/site/911health/index.page

Missile Community Cancer Study

<u>airforcemedicine.af.mil/Resources/Missile-Community-</u> Cancer-Study/

Black Women's Health Study

bu.edu/bwhs/

American Cancer Society's Cancer Prevention Study-3

cancer.org/research/cps3-cancer-prevention-study-

3.html

HIV/AIDS Cancer Registry Match Study

hivmatch.cancer.gov

Childhood Cancer Survivor Study

ccss.stjude.org

More information on TCR's data linkage process can be found here: <u>dshs.texas.gov/texas-cancer-registry/data-requests-tcr/research-data/data-linkages</u>.

Resources, Technical Notes, and Data Sources

Resources

TCR aims to make Texas cancer data widely available and accessible. Statistical tables for cancer incidence, mortality, survival, prevalence, and potential years of life lost in Texas, as well as special reports on topics such as cancers associated with alcohol, human papilloma virus (HPV), obesity, and tobacco; screening-amenable cancers; living with cancer; and incidence trends, are available at <u>dshs.texas.gov/texas-cancer-registry/cancer-statistics</u>.

TCR's website lists organizations that provide additional cancer information to help the general public, patients, caregivers, and survivors: <u>dshs.texas.qov/texas-cancer-registry/additional-resources-cancer-information</u>.

The Texas Cancer Plan, developed by CPRIT, is the state's call to action for cancer research, prevention, and control. The Texas Cancer Plan identifies the cancer challenges and issues that affect the state. It includes goals, objectives, and strategies to help inform and guide the fight against cancer and is available at cprit.texas.gov/about-us/texas-cancer-plan.

Technical Notes

The COVID-19 Pandemic: Diagnosis year 2020 was excluded from trend analyses shown in this report, in accordance with NCI and CDC guidance, given the decline in cancer diagnoses resulting from the COVID-19 pandemic. Because 2020 was a temporary, anomalous year caused by the pandemic, including 2020 data in cancer incidence trend analyses can lead to biased estimates. The 2020 incidence data are included in other cancer statistics in this report, including relative survival, five-year aggregate (2018-2022) cancer incidence rates, and prevalence estimates.

Delay-Adjustment: TCR used delay-adjustment in the trend analyses for hepatocellular carcinoma incidence. This method adjusts case counts to account for anticipated corrections — typically additional cases that are reported late — to the cancer incidence data. Delay-adjustment can be a valuable tool to determine current cancer trends more precisely.

Data Sources

Texas Incidence and Survival Data: TCR (<u>dshs.texas.gov/texas-cancer-registry</u>) SEER*Stat Database, 1995-2022 Incidence, Texas statewide, 2024 Submission, cutoff 9/27/2024. CESB, DSHS, created February 2025.

U.S. Incidence and Survival Data: NPCR and SEER Incidence SEER*Stat Database: NPCR and SEER Incidence - USCS Public Use Research Database, 2024 Submission (2001-2022). United States Department of Health and Human Services (HHS), CDC, and NCI. Released June 2025.

Texas Mortality Data: TCR (<u>dshs.texas.gov/texas-cancer-registry</u>) SEER*Stat Database, 1990-2022 Mortality, Texas statewide. CESB, DSHS, created March 2025.

NAACCR Incidence Data - CiNA Research File, 1995-2021, Delay Adjusted (includes data from CDC's NPCR and NCI's SEER registries, certified by NAACCR, submitted December 2023).

Texas Cancer Registry

dshs.texas.gov/TCR