Identification of Hepatitis B Virus-infected Pregnant Women and Infants through Birth Estimates and Laboratory Reporting of Pregnancy Status

Alaya Koneru, MPH
Epidemiologist
Division of Viral Hepatitis, Centers for Disease Control and Prevention

2016 Texas Perinatal Hepatitis B Prevention Program
July 20, 2016
Background

- Hepatitis B is an infection of the liver caused by Hepatitis B Virus
- Hepatitis B is transmitted by percutaneous or mucosal exposure to infectious blood or body fluids
- 700,000-1.4 million persons estimated to be infected with Hepatitis B in the U.S.

- MMWR 2005
- 2012 CDC Surveillance Data
Chronic Hepatitis B

- Chronic infection develops in
 - 90% of infected infants
 - 30% of infected children aged <5 years
 - <5% of infected persons aged ≥5 years

- Persons with chronic Hepatitis B have a 25% risk of premature death from cirrhosis/liver cancer

Mast et al. MMWR 2005
Perinatal Hepatitis B Infection

- An infant can acquire Hepatitis B from
 - Mother-to-child transmission (perinatal)
 - Annually, an estimated 25,000 infants are born to HBsAg positive women in the United States
 - An infected household member
Identifying Infants Born to HBsAg Positive Mothers

- 47% of the expected number of infants born to HBsAg positive mothers were identified in 2012 (U.S. Perinatal Hepatitis B Prevention Program)
 - Among states, this figure ranged from 0% to 104%

- Estimates based on
 - Natality data
 - HBsAg seroprevalence among women of child-bearing age, by race and ethnicity

HBsAg = Hepatitis B surface antigen
Smith et al. *Pediatrics* 2012
Risk for Perinatal Infection

- Without post-exposure prophylaxis, perinatal Hepatitis B infection occurs in
 - 70-90% of infants born to mothers who are HBsAg positive/HBeAg positive
 - <10% of infants born to mothers who are HBsAg positive/HBeAg negative

HBsAg = Hepatitis B surface antigen
HBeAg = Hepatitis B e antigen
MMWR2005
Session Overview

This session will include discussion of ways CDC helps optimize identification of hepatitis B virus (HBV)-infected* pregnant women and their infants through:

1) Annual estimates of infants born to HBV-infected women
 - Current and proposed methodologies

2) Improving laboratory reporting of pregnant women testing positive for HBV infection

*Hepatitis B virus infection is defined as positivity for hepatitis B surface antigen (HBsAg).
PART 1:

Estimating Annual Births to Hepatitis B Virus-Infected Women in the United States
Why is estimating births important?

A Comprehensive Immunization Strategy to Eliminate Transmission of Hepatitis B Virus Infection in the United States

Recommendations of the Advisory Committee on Immunization Practices (ACIP)
Part 1: Immunization of Infants, Children, and Adolescents

CDC established the Perinatal Hepatitis B Prevention Program to reduce mother-to-child transmission of hepatitis B virus infection by case-management of infants for:

- post-exposure prophylaxis (PEP)
- post-vaccination serologic testing (PVST)

Identify HBsAg+ Pregnant Women

Give PEP to their infants within 12 hours of birth + complete hepatitis B vaccine series

Prevent up to 95% of mother-to-child transmission of hepatitis B virus infection

Current Method for Estimating Births to HBsAg+ Pregnant Women – 1994 to Present

Estimated Births to HBsAg+ Women =
(# Infants in Subcategory) X (HBsAg prevalence from *NHANES or †Literature)

HBV Endemic Regions & Immigration to the US

FIGURE 3. Geographic distribution of chronic hepatitis B virus (HBV) infection — worldwide, 2006*

HBsAg Prevalence

- ≥8% = High
- 2%-7% = Intermediate
- <2% = Low

* For multiple countries, estimates of prevalence of hepatitis B surface antigen (HBsAg), a marker of chronic HBV infection, are based on limited data and might not reflect current prevalence in countries that have implemented childhood hepatitis B vaccination. In addition, HBsAg prevalence might vary within countries by subpopulation and locality.

Source: Centers for Disease Control and Prevention. Recommendations for Identification and Public Health Management of Persons with Chronic Hepatitis B Virus Infection. MMWR 2008;57(No. RR-8)
Global Vaccine Campaigns

Global 3-dose hepatitis B vaccine coverage among infants

1% 1990

81% 2013

Evolving Hepatitis B Prevalences Worldwide

Source:
WHO Global Immunization Data, 2013: http://www.who.int/immunization/monitoring_surveillance/global_immunization_data.pdf?ua=1
Proposed Method for Estimating Births to HBsAg+ Pregnant Women

Estimated Births to HBsAg+ Women =
(# Infants in Subcategory) X (HBsAg prevalence from *NHANES 07-12 or †PHBPP data)

Results – US Births and Estimated Births to HBsAg+ Women, 2013

Overall Births by Mother's Country of Birth, 2013
- US-Born: 77%
- Foreign-Born: 20%
- US Territory-Born: 2%
- Other/Unknown Origin: 1%

n = 3,932,181

Estimated Births to HBV-infected Mothers, 2013
- US-Born: 33%
- Foreign-Born: 8%
- US Territory-Born: 59%
- Other/Unknown Origin: 0%

n = 18,017
Results – Estimated Births to US-Born HBsAg+ Women by Race/Ethnicity (n=6,008), 2013

Number of Births

White, Non-Hispanic | Black, Non-Hispanic | Hispanic | Asian/Pacific Islander | Other/Unknown
Results — Estimated Births to Foreign-born HBsAg+ Women by Region of Birth (n=10,617), 2013

Number of Births

<table>
<thead>
<tr>
<th>Region</th>
<th>Number of Births</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Asia</td>
<td>5000</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>4000</td>
</tr>
<tr>
<td>West/Central Asia</td>
<td>3000</td>
</tr>
<tr>
<td>Australia/Oceania</td>
<td>2000</td>
</tr>
<tr>
<td>Caribbean (except Haiti)</td>
<td>1000</td>
</tr>
<tr>
<td>Mexico and Central...</td>
<td>500</td>
</tr>
<tr>
<td>Middle East</td>
<td>500</td>
</tr>
<tr>
<td>North America</td>
<td>500</td>
</tr>
<tr>
<td>Pacific Islands</td>
<td>500</td>
</tr>
<tr>
<td>South Asia</td>
<td>500</td>
</tr>
<tr>
<td>Haiti</td>
<td>500</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>500</td>
</tr>
<tr>
<td>Southern Europe</td>
<td>500</td>
</tr>
<tr>
<td>Africa</td>
<td>500</td>
</tr>
<tr>
<td>Total</td>
<td>10,617</td>
</tr>
</tbody>
</table>
Results – Comparison of Methodologies, 2013

<table>
<thead>
<tr>
<th></th>
<th>Current Method (race/ethnicity)</th>
<th>Proposed Method (country of birth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Births, Point Estimate</td>
<td>25,268</td>
<td>18,017</td>
</tr>
<tr>
<td>Estimated Births, Lower Limit</td>
<td>18,003</td>
<td>13,204</td>
</tr>
<tr>
<td>Percent of Overall Births</td>
<td>0.64%</td>
<td>0.46%</td>
</tr>
</tbody>
</table>
In 2013, 10,902 infants were identified and enrolled into PHBPPs across the United States.

- Texas* PHBPP: 562

Infants Identified by PHBPPs, 2013

<table>
<thead>
<tr>
<th></th>
<th>Current n = 25,268</th>
<th>Proposed n = 18,017</th>
</tr>
</thead>
<tbody>
<tr>
<td>National, % Identified</td>
<td>43%</td>
<td>61%</td>
</tr>
<tr>
<td>Texas, % Identified</td>
<td>38%</td>
<td>60%</td>
</tr>
</tbody>
</table>

* Texas values do not include values from San Antonio or Houston.
Advantages of Proposed Method

- The proposed method for estimating the number of births to pregnant women with chronic hepatitis B infection by using mother’s country of birth and updated hepatitis B prevalences accounts for the changing demographics of the US as well as evolving global HBsAg prevalences.

- This method provides targeted birth estimates for health jurisdictions by better taking into account demographics of their populations served
Limitations to Proposed Method

- The proposed model partly utilizes HBsAg prevalences determined from PHBPP, which likely do not identify all infected women, leading to probable underestimation.

- The model also partly uses NHANES data
 - NHANES is believed to underestimate overall HBV because high-risk groups (e.g. institutionalized, homeless) are not included.
 - Sample sizes for race/ethnicity groups were limited, possibly resulting in an overestimate of prevalence in these groups.

- Regional prevalences do not necessarily reflect local or cultural differences in prevalence of HBsAg.
PART 2:

Laboratory Reporting of HBV-infected Pregnant Women
Background

- The Laboratory Reporting of Pregnancy Status (LRPS) Working Group was formed to facilitate identification of HBsAg+ pregnant women.

- Members include representatives from:
 - CDC
 - Health Departments
 - Professional Medical Organizations
 - Public Health and Commercial Laboratories
Background, part II

- Four commercial labs report HBsAg+ women who are possibly pregnant to health departments by sending a Special Laboratory Report (SLR)

- These labs include:
 - ARUP Laboratories
 - LabCorp
 - Mayo Medical Laboratories
 - Quest Diagnostics
What is a Special Laboratory Report?

- A Special Laboratory Report (SLR) indicates the possible pregnancy status of an individual with an HBsAg+ laboratory test result.

- Each of these labs has a unique SLR that is sent by HL7/ELR, secure fax, or secure email.

For more information on SLRs, please contact Alaya Koneru at xjq8@cdc.gov
SLR Formats

If a health department has an electronic laboratory reporting (ELR) system, prenatal indicators from the following commercial labs are sent by:

- ARUP Laboratories
- LabCorp
- Mayo Medical Laboratories
- Quest Diagnostics*

* Quest Diagnostics is beta-testing sending SLR via ELR in some parts of the US. As of June 2015, the majority of health departments continue to receive SLR through a supplemental Excel report.
If a health department does not have an ELR system, prenatal indicators from the following commercial labs are sent by:

- ARUP Laboratories
- Mayo Medical Laboratories
- Quest Diagnostics

Please note: LabCorp does not send prenatal indicators via hardcopy reports.
Screening Pregnant Women for Hepatitis B Virus (HBV) Infection:
Ordering Prenatal Hepatitis B Surface Antigen (HBsAg) Tests from Major Commercial Laboratories

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Test Option</th>
<th>Test Name</th>
<th>Reflex to Confirmation Test*</th>
<th>Test Code/ID</th>
<th>CPT Code</th>
<th>Web Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>LabCorp</td>
<td>Panel</td>
<td>Prenatal Profile I with Hepatitis B Surface</td>
<td>✓</td>
<td>202945</td>
<td>80055</td>
<td>https://www.labcorp.com/wps/portal/provider/testmenu/ (Enter test code or CPT code to search for test)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antigen</td>
<td></td>
<td></td>
<td></td>
<td>https://www.labcorp.com/wps/portal/provider/testmenu/ (Enter test code or CPT code to search for test)</td>
</tr>
<tr>
<td></td>
<td>Panel</td>
<td>Hepatitis Profile XIII (HBV Prenatal Profile)</td>
<td>✓</td>
<td>265397</td>
<td>87340**</td>
<td>https://www.labcorp.com/wps/portal/provider/testmenu/ (Enter test code or CPT code to search for test)</td>
</tr>
<tr>
<td></td>
<td>Standalone</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standalone</td>
<td>Hepatitis B Surface Antigen Prenatal, Serum</td>
<td>✓</td>
<td>HBAGP</td>
<td>87340</td>
<td>http://www.mayomedicallaboratories.com/test-catalog/Overview/56185</td>
</tr>
<tr>
<td></td>
<td>Standalone</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

*When an HBsAg test result is reactive, laboratories may automatically perform a confirmatory test without additional provider order.

This CPT code corresponds only to the HBsAg screening component of this laboratory panel; additional CPT codes might be associated with other confirmatory tests in this laboratory panel.*

Notes: CDC recommends healthcare providers use prenatal HBsAg tests (vs. non-specific tests) for pregnant women, which allows for reporting of positive results along with pregnancy status to public health jurisdictions. Refer all HBsAg positive pregnant women to Prenatal Hepatitis B Prevention Program coordinators for case management of mother and infant: http://www.cdc.gov/vaccines/vpd-vac/hb/prenatal-contacts.htm.

Laboratories reserve the right to add, modify, or stop performing tests at any time – providers should review any test notifications from laboratories for changes.

Screening and Referral Algorithm for Hepatitis B Virus (HBV) Infection among Pregnant Women

Assess if at high risk* for acquiring HBV infection

No

Yes

No further action needed

Consider vaccination during pregnancy or postpartum

Repeat HBsAg testing when admitted for delivery

HBsAg

HBsAg (hepatitis B surface antigen)

HBsAg

Order Additional Tests:
- HBeAg (hepatitis B e-antigen)
- HBV DNA Concentration
- ALT (alanine aminotransferase)

No

HBeAg

HBV DNA >20,000 IU/mL

ALT ≥19 IU/L

Refer for care postpartum

Refer to specialist immediately during pregnancy

*High risk for HBV infection includes: household or sexual contacts of HBsAg-positive persons; injection drug use; more than one sex partner during the past six months; evaluation or treatment for a sexually transmitted disease, HIV infection, chronic liver disease, or end-stage renal disease; and international travel to regions with HBsAg prevalence of ≥2%.

Available at http://www.cdc.gov/hepatitis/hbv/pdfs/prenatalhbsagtesting.pdf
Evaluation of Special Laboratory Reports (SLRs)

- Developed and pilot-tested a survey among PHBPP coordinators on the LRPS Workgroup

- 56 Perinatal Hepatitis B Prevention Program Coordinators (PHBPP) invited to participate in final survey
 - Web-based survey administered via SurveyMonkey
 - 75% (N=56) of invited PHBPP coordinators completed or partially completed the survey
Survey Results

- HBsAg+ Laboratory Reports by Gender in 2013 (n=83,755)

 Answered: 27 Skipped: 15

Males 52%
Females 48%
Survey Results, continued

- HBsAg+ Laboratory Reports by Type of Laboratory Performing Testing in 2013 (n=80,220)
 Answered: 25 Skipped: 17

National
- 34%
- 63%
- 2%
- 1%

Texas
- 25%
- 70%
- 5%

Data collected through email communications with Ruthie Benson, 06/26/2014
Survey Results, continued

- HBsAg+ Laboratory Reports by 4 Major Commercial Laboratories, 2013 (n=31,692)
 Answered: 23 Skipped: 19

National

- ARUP: 55%
- Mayo Medical Laboratories: 4%
- LabCorp: 39%
- Quest Diagnostics: 2%

Texas*

- ARUP: 58%
- Mayo Medical Laboratories: 1%
- LabCorp: 41%
- Quest Diagnostics: 0%

*Data collected through email communications with Ruthie Benson, 06/26/2014
Impact of SLRs, part I

- 65.6% (n=32) of participants reported that their health department receives SLR reporting of pregnancy status of HBsAg+ persons from one or more of the 4 major commercial labs.

- 34.8% (n=23) of participants reported identifying an increased number of HBsAg+ pregnant women since SLRs were implemented.
 - 65.2% (n=23) reported no change in the number identified.
 - Texas*: 24% increase in pregnant women identified between mid-year 2013 and mid-year 2014

*Data collected through email communications with Ruthie Benson, 06/26/2014
Impact of SLRs, part II

- From 2013-2014, 52.2% (n=23) of participants identified some HBsAg+ pregnant women initially or solely through SLR.
 - 90.0% (n=10) of these participants reported identifying these women initially through SLR.
 - 70.0% (n=10) of these participants reported identifying these women solely through SLR.

- Texas*: 48 HBsAg+ pregnant women were identified solely through SLR (over Jan-April 2014)

*Data collected through email communications with Ruthie Benson, 04/10/2014
23.8% (n=21) of participants reported spending a decreased amount of time and effort in identifying HBsAg+ pregnant women since SLRs were implemented.

- 19.1% (n=21) reported spending an increased amount of time and effort.
- 57.1% (n=21) reported spending the same amount of time and effort.

Data collected through email communications with Ruthie Benson, 04/10/2014
<table>
<thead>
<tr>
<th>Time Spent in Identifying HBsAg+ Pregnant Women</th>
<th>Rationale</th>
</tr>
</thead>
</table>
| **Increased** | • We receive an alert to our program if any HBsAg-positive possibly pregnant women are identified through this process.
• Capture recapture helps as well.
• Because I am getting duplicates, I am validating same information twice.
• Must go through lab data list and contact MD offices to determine pregnancy status and confirm lab results with MD |

Texas*: increased time and effort spent

Reason: “We started calling the rest of providers to ascertain pregnancy status on the women of childbearing age (something we couldn’t do before because due to volume

*Data collected through email communications with Ruthie Benson, 04/10/2014
Advantages of SLR

- Saves time in determining pregnancy status (x6)
- Helps identify women who are not identified otherwise (x4)
- Early prenatal identification of pregnant HBsAg+ women (x3)
- Identify pregnancy status (x2)
Disadvantages of SLR

- None (x5)
- Lack of available confirmatory testing (x2)
- Increased time spent in identifying/confirming cases (x2)
- Difficulty locating correct provider/contacts (x2)
- Not receiving SLR from all labs (x2)
- Inconsistent/Delayed reporting (x1)
What do PHBPPs think should be the next effort for improving identification of HBsAg+ pregnant women?

- Recruit more laboratories to report pregnancy status (x11)
- Improve SLR (e.g. standardize reporting) (x6)
- Require pregnancy status reporting on lab forms (x2)
- Expand pregnancy reporting to HBeAg and HBV DNA test results (x2)
- Educate providers on appropriate testing (x2)
Expanding Pregnancy Reporting by Laboratories

- Memo to all US labs requesting reporting of pregnancy status on HBsAg+ results
- Long-term solutions for pregnancy reporting
- Expanding laboratory-based pregnancy reporting to other diseases (including hepatitis C, HIV, and syphilis)
 - Collaborate with additional groups at CDC including perinatal groups at NCHHSTP and NEDSS group at DHIS/CSELS

*NOTE: LabCorp reports pregnancy status of a woman testing positive for any reportable disease when the disease assay is ordered through a LabCorp prenatal or obstetric panel (diseases include, but are not limited to, hepatitis C, HIV, and syphilis).
Final Messages

1) Annual estimates of infants born to HBV-infected women
 - Programmatic goals for PHBPPs to optimize identification of HBV-infected women and their infants
 - Maternal characteristics of race/ethnicity and/or birth origin provide possible groups that could be targeted for outreach

2) Laboratory reporting of pregnant women testing positive for HBV infection
 - Helps PHBPPs identify more women for case-management
 - Can reduce burden on PHBPPs for determining which positive HBV tests are for pregnant women
Acknowledgements

Division of Viral Hepatitis, NCHHSTP, CDC

- Noele Nelson
- Sarah Schillie
- Henry Roberts
- Sherry Chen
- Cynthia Jorgensen
- Prevention Branch

Immunization Services Division, NCIRD, CDC

- Nancy Fenlon
Questions?

For more information, please contact:
Alaya Koneru, MPH
Email: xjq8@cdc.gov

Division of Viral Hepatitis
National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention
Centers for Disease Control and Prevention

*The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.
Proposed Method – Maternal Country of Birth Categories

United States-born Women by Race/Ethnicity, total
- White, non-Hispanic
- Black, non-Hispanic
- Hispanic
- Asian/Pacific Islander
- Other/Unknown

United States Territory-born Women by Territory, total
- American Samoa
- Guam
- Northern Mariana Islands
- Puerto Rico
- Virgin Islands

Foreign-born Women by Region, total

Africa
- East Asia
- South Asia
- Southeast Asia
- West/Central Asia
- Australia/Oceania

Asia

Europe
- Eastern Europe
- Southern Europe
- Western and Northern Europe
- Haiti
- Mexico and Central America
- Middle East
- North America
- Pacific Islands
- South America
Enhanced Perinatal Hepatitis B Prevention Program

- HBsAg-positive pregnant women identified; program staff collected and reported maternal and infant data to CDC

- 5 sites
 - Florida
 - Michigan
 - Minnesota
 - New York City
 - Texas (excluding Houston and San Antonio)

- 2007-2013
Enhanced Perinatal Hepatitis B Prevention Program

- 17,951 mother-infant pairs identified

- Median maternal age: 30.0 years (range: 14.5-51.6 years)

- Most infants born to mothers who were
 - Asian/Pacific Islander (61.2%)
 - Foreign-born (88.7%)

- Data for certain characteristics or outcomes not available for all mother-infant pairs
Resources

- Prenatal HBsAg Test Guide and Screening/Referral Algorithm:
 - CDC: